パラコンパクト空間
数学において、パラコンパクト空間 (paracompact space) はすべての開被覆が局所有限な開細分を持つような位相空間である。これらの空間は Dieudonné (1944) によって導入された。すべてのコンパクト空間はパラコンパクトである。すべてのパラコンパクトハウスドルフ空間は正規であり、ハウスドルフ空間がパラコンパクトであることと、任意の開被覆に対しそれに従属する 1 の分割を持つことは同値である。パラコンパクト空間の定義にハウスドルフであることを含める場合もある。
パラコンパクト空間のすべての閉部分空間はパラコンパクトである。ハウスドルフ空間のコンパクト部分集合は常に閉であるが、これはパラコンパクト部分集合に対しては正しくない。そのすべての部分空間がパラコンパクト空間であるような空間は遺伝的パラコンパクト (hereditarily paracompact) と呼ばれる。これはすべての開部分空間がパラコンパクトであると要求することと同値である。
チコノフの定理(コンパクト位相空間の任意の集まりの積はコンパクトである)はパラコンパクト空間には一般化されない、つまり、パラコンパクト空間の積はパラコンパクトであるとは限らない。しかしながら、パラコンパクト空間とコンパクト空間の積はつねにパラコンパクトである。
すべての距離空間はパラコンパクトである。位相空間が距離化可能であることとパラコンパクトかつ局所距離化可能なハウスドルフ空間であることは同値である。
Contents
パラコンパクト性
集合 X の被覆は X の部分集合の集まりであってその和集合が X を含むようなものである。記号で書けば、U = {Uα : α in A} が X の部分集合の添え字づけられた族であれば、U が X の被覆であるとは、
- [math]X \subseteq \bigcup_{\alpha \in A}U_{\alpha}.[/math]
位相空間 X の被覆が開であるとは、すべてのその元が開集合であるということである。空間 X の被覆の細分は同じ空間の新しい被覆であって新しい被覆のすべての集合が古い被覆のある集合の部分集合であるようなものである。記号で書けば、被覆 V = {Vβ : β in B} が被覆 U = {Uα : α in A} の細分であることと V の任意の Vβ に対して U のある Uα が存在して Vβ が Uα に含まれることが同値である。
空間 X の開被覆が'局所有限であるとは、空間の全ての点が被覆の有限個の集合としか交わらない近傍を持つということである。記号で書けば、U = {Uα : α in A} が局所有限であることと、任意の x ∈ X に対して x のある近傍 V(x) が存在して集合
- [math]\left\{ \alpha \in A : U_{\alpha} \cap V(x) \neq \varnothing \right\}[/math]
が有限であることが同値である。それで位相空間 X はすべての開被覆が局所有限な開細分を持つときにパラコンパクトであると言われる。
例
- すべてのコンパクト空間はパラコンパクトである。
- すべての正則リンデレーフ空間はパラコンパクトである。とくに、すべての局所コンパクトハウスドルフ第二可算空間はパラコンパクトである。
- ゾルゲンフライ直線は、コンパクト、局所コンパクト、第二可算、距離化可能のいずれでもないが、パラコンパクトである。
- すべての CW 複体はパラコンパクトである[1]。
- (Theorem of A. H. Stone) すべての距離空間はパラコンパクトである[2]。初期の証明は幾分難解であったが、初等的な証明が M. E. Rudin によって発見された[3]。距離空間が非可分の場合は、定理を満たすような細分の存在証明に選択公理を必要とする。ZFも従属選択公理つきZFも十分でないことが証明されている[4]。
パラコンパクトでない空間の例には次のようなものがある。
- 最も有名な反例は長い直線であり、これはパラコンパクトでない位相多様体である。(長い直線は局所コンパクトであるが、第二可算でない。)
- 別の反例は無限個の離散空間の非可算個のコピーの積である。particular point topology が入っている任意の無限集合はパラコンパクトでない; 実はメタコンパクトですらない。
- プリューファー多様体は非パラコンパクトな面である。
- bagpipe theoremは非コンパクト面の 2ℵ1 個の同型類があることを示している。
性質
パラコンパクト性は弱遺伝的 (weakly hereditary) である、すなわちパラコンパクト空間のすべての閉部分空間はパラコンパクトである。これは Fσ-部分空間にも同様に拡張できる。
- 正則空間はすべての開被覆が局所有限細分を持てばパラコンパクトである。(ここで細分は開であるとは要求されていない。)とくに、すべての正則リンデレーフ空間はパラコンパクトである。
- (Smirnov metrization theorem) 位相空間が距離化可能であることとパラコンパクト、ハウスドルフ、かつ局所距離化可能であることは同値である。
- Michael の選択定理 は次のようなものである。X からバナッハ空間の空でない閉凸部分集合の中への下半連続多価函数が連続選択子を持つことと X がパラコンパクトであることは同値である。
パラコンパクト空間の積はパラコンパクトであるとは限らないが、次のことは正しい:
- パラコンパクト空間とコンパクト空間の積はパラコンパクトである。
- メタコンパクト空間とコンパクト空間の積はメタコンパクトである。
これらの結果は両方とも有限個のコンパクト空間の積がコンパクトであることの証明に使われる tube lemma によって証明できる。
パラコンパクトハウスドルフ空間
パラコンパクト空間はハウスドルフであることも要求されることがあり、性質が拡大する。
- (Theorem of Jean Dieudonné) すべてのパラコンパクトハウスドルフ空間は正規である。
- すべてのパラコンパクトハウスドルフ空間は shrinking space である、つまり、パラコンパクトハウスドルフ空間のすべての開被覆は shrinking、すなわち同じ集合によって添え字づけられた別の開被覆であって新しい被覆の各集合の閉包が古い被覆の対応する集合の中にあるようなもの、を持つ。
- パラコンパクトハウスドルフ空間上、層係数コホモロジーとチェックコホモロジーは等しい[5]。
1の分割
パラコンパクトハウスドルフ空間の最も重要な性質は正規であり任意の開被覆に従属な1の分割を持つことである。これは次を意味する: X がある与えられた開被覆を持つパラコンパクトハウスドルフ空間であれば、次を満たす単位区間 [0, 1] に値を持つ X 上の連続関数の集まりが存在する:
- 集まりからのすべての関数 f: X → R に対して、被覆のある開集合 U が存在して f の台は U に含まれる;
- すべての点 x ∈ X に対して、x のある近傍 V が存在して、集まりの関数の有限個を除くすべては V において恒等的に 0 であり 0 でない関数の和は V において恒等的に 1 である。
実は、T1 空間がハウスドルフかつパラコンパクトであることと任意の開被覆に従属な 1 の分割を持つことは同値である(下記参照)。この性質は(少なくともハウスドルフの場合において)パラコンパクト空間を定義するのに使われることがある。
1 の分割は有用である、なぜならばそれによってしばしば局所構造を全空間に拡張できるからである。例えば、パラコンパクト多様体上の微分形式の積分はまず(多様体がユークリッド空間のように見え積分が良く知られている)局所的に定義され、そしてこの定義が 1 の分割を経由して全空間に拡張される。
パラコンパクトハウスドルフ空間は 1 の分割を持つことの証明
ハウスドルフ空間 X がパラコンパクトであることとすべての開被覆が従属な 1 の分割を持つことは同値である。右から左の方向は直截である。今左から右を示すのは、いくつかの段階に分けて行う。
コンパクト性との関係
コンパクト性とパラコンパクト性の定義には類似がある: パラコンパクト性に対して、"部分被覆"は"開細分"で置き換えられ、"有限"は"局所有限"で置き換えられる。これらの変化は両方とも重要である:もしパラコンパクトの定義を取り"開細分"を"部分被覆"に、あるいは"局所有限"を"有限"に戻したら、どちらの場合にも結局コンパクト空間になる。
パラコンパクト性はコンパクト性の概念とほとんど関係がないが、位相空間の構成要素を扱いやすいピースに解体することにむしろもっと関係がある。
コンパクト性との性質の比較
パラコンパクト性は次の点でコンパクト性に似ている:
それは次の点で異なる:
- ハウスドルフ空間のパラコンパクト部分集合は閉であるとは限らない。実は、距離空間に対して、すべての部分集合はパラコンパクトである。
- パラコンパクト空間の積はパラコンパクトであるとは限らない。下極限位相における実数直線 R の平方はこれの古典的な例である。
バリエーション
パラコンパクト性の概念のいくつかのバリエーションがある。それらを定義するために、まず上の用語のリストを拡張する必要がある。
位相空間が:
- メタコンパクトであるとは、すべての開被覆が開各点毎有限細分を持つことである。
- オルソコンパクト(オーソコンパクト)であるとは、すべての開被覆が開細分であってこの細分における任意の点についてのすべての開集合の共通部分が開であるようなものを持つことである。
- 全体正規 (fully normal) であるとは、すべての開被覆が開 star refinement を持つことであり、fully T4 であるとは、fully normal かつ T1 であることである(分離公理 (separation axioms) 参照)。
副詞「可算」 (countably) を形容詞「パラコンパクト」、「メタコンパクト」、"fully normal" の任意に付け足すことができ、このとき要求は可算開被覆に対してのみ適用する。
すべてのパラコンパクト空間はメタコンパクトであり、すべてのメタコンパクト空間はオルソコンパクトである。
バリエーションに関係する定義
- 被覆と点が与えられると、被覆内の点の star はその点を含む被覆のすべての集合の和集合である。記号で書けば、U = {Uα : α in A} の x の星形 (star) は
- [math]\mathbf{U}^{*}(x) := \bigcup_{U_{\alpha} \ni x}U_{\alpha}.[/math]
- star の表記は文献で標準的になっているものはなく、これは 1 つの可能性にすぎない。
- 空間 X の被覆の star refinement は同じ空間の新しい被覆であって空間の任意の点が与えられると新しい被覆の点の star が古い被覆のある集合のある部分集合であるようなものである。記号では、V が U = {Uα : α in A} の star refinement であるとは、X の任意の x に対して、U のある Uα が存在して、V*(x) が Uα に含まれるということである。
- 空間 X の被覆が点有限 (pointwise finite) であるとは、空間の全ての点が被覆の有限個の集合にしか属していないということである。記号では、U が点有限被覆であるとは、X の任意の x に対して、集合
- [math]\left\{ \alpha \in A : x \in U_{\alpha} \right\}[/math]
- が有限であるということである。
名前が暗に意味しているように、fully normal 空間は正規である。すべての fully T4 空間はパラコンパクトである。実は、ハウスドルフ空間に対して、パラコンパクト性と full normality は同値である。したがって、fully T4 空間はパラコンパクトハウスドルフ空間と同じものである。
歴史的注釈: fully normal 空間はパラコンパクト空間よりも前に定義された。すべての距離化可能空間は fully normal であることの証明は易しい。A.H. Stone によってハウスドルフ空間に対して fully normal とパラコンパクトが同値であることが証明されたとき、彼はすべての距離化可能空間はパラコンパクトであることを暗に証明していたのである。後に M.E. Rudin は後者の事実の直接証明を与えた。
関連項目
- 亜パラコンパクト空間 (aparacompact space)
- パラノーマル空間 (Paranormal space)
脚注
- ↑ Hatcher, Allen, Vector bundles and K-theory, preliminary version available on the author's homepage
- ↑ Stone, A. H. Paracompactness and product spaces. Bull. Amer. Math. Soc. 54 (1948), 977-982
- ↑ Rudin, Mary Ellen. A new proof that metric spaces are paracompact. Proceedings of the American Mathematical Society, Vol. 20, No. 2. (Feb., 1969), p. 603.
- ↑ C. Good, I. J. Tree, and W. S. Watson. On Stone's Theorem and the Axiom of Choice. Proceedings of the American Mathematical Society, Vol. 126, No. 4. (April, 1998), pp. 1211–1218.
- ↑ Brylinski, Jean-Luc (2007), Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Mathematics, 107, Springer, p. 32, ISBN 9780817647308.
参考文献
- Dieudonné, Jean (1944), “Une généralisation des espaces compacts”, Journal de Mathématiques Pures et Appliquées, Neuvième Série 23: 65–76, ISSN 0021-7824, MR 0013297
- Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology (2 ed), Springer Verlag, 1978, ISBN 3-540-90312-7. P.23.
- Willard, Stephen (1970). General Topology. Reading, Massachusetts: Addison-Wesley. ISBN 0-486-43479-6.
- Mathew, Akhil. “Topology/Paracompactness”. . 2011閲覧.