アルティン・シュライアー理論

提供: miniwiki
移動先:案内検索

数学において、アルティンシュライアー理論 (ArtinSchreier theory) は、標数 p の体の p 次ガロワ拡大の記述を与える。従ってそれはクンマー理論では記述できない場合を扱う。

アルティン・シュライアー拡大

K を標数 p の体とし、a をこの体のある元とする。多項式 XpX + a分解体への K の拡大をアルティン・シュライアー拡大と呼ぶ。b がこの多項式の 1 つの根であれば、0 から p − 1 までの i に対して b + i がその多項式の全ての根であり(cf. フロベニウス準同型)、それらは相異なる。すると 2 つの場合があり得る。

  • 根の 1 つが K に属していれば、すべての根は K に属しており、多項式は K 上既に分解している。
  • そうでないとき、つまり根の 1 つが K に属していなければ、どの根も K に属していない、言い換えると axK に対して xxp の形ではない。このとき多項式 XpX + aK 上既約である。その分解体(および根体K[b] は Kp巡回拡大であり、拡大のガロワ群の生成元(の 1 つ)は [math]b\mapsto b+1[/math] によって定義される写像によって与えられる。

実際 2 つ目の場合には、XpX + a の分解体は Kb で拡大され、多項式の p 個の根 b + iK[b] に属しており相異なる。すると K のこの拡大は分離拡大であり従ってガロワ拡大である。ガロワ群が p 個の射からなり 0 ≤ ip − 1 に対して [math]b\mapsto b+i[/math] によって定義されることを証明するには、多項式が既約であること、従って K[b] がその根体であることを示せば十分である。

もし K[X] の次数 0 < d < p の多項式が XpX + a を割れば、それは K[b] において単項式 (Xbi の積であり、Xd − 1 の係数は、K の元で、従って jKdbj の形で、dK において 0 でなく、これは bK に属していないから不可能である。よって多項式は既約である[1]

例えば、2 つの元を持った有限体は 4 つの元からなる有限体をアルティン・シュライアー拡大として持ち、これは多項式 X2X + 1 = X2 + X + 1 によって拡大されたものである。

アルティン・シュライアー理論

アルティン・シュライアー理論は上の事実の逆をいうものである。標数 p の体の p 次巡回拡大はすべてアルティン・シュライアー拡大である。これは例えばヒルベルトの定理90の加法版を使って証明される[1]

p 次非ガロワ拡大はこの理論によって記述することはできない。例えば、p 個の元を持った素体上の一変数関数体 Fp(T) において不定元 Tp 乗根(つまり不定元 X の多項式 XpT の根、これは非分離である)を添加して得られる拡大。

従って冪根による分解の理論の標数 p の類似理論はアルティン・シュライアー拡大を認めなければならない。拡大次数が標数の冪の拡大を得るにはヴィットベクトルfrançais版の理論を使う。

歴史的コメント

アルティン・シュライアー型の多項式は1866年に出版された Joseph-Alfred Serretfrançais版Cours d'algèbre supérieure の第三版の有限体についての章において既に見つかる[2]。セレは整数 g が素数 p で割れなければ多項式 XpXg は mod p で既約であること、現代的な言葉で言えば、すべての gFp* に対して XpXg は既約であること、を証明している[3]。この結果は上のことから標数 p の体を Fp として証明できる。

参考文献

  1. 1.0 1.1 テンプレート:Lang1, § VI.6 de l'édition Springer, § VIII.6 de l'édition Addison-Wesley.
  2. (2013) Handbook of Finite Fields, Discrete Mathematics and its Applications. CRC Press. ISBN 978-1-4398-7378-6.  p 9.
  3. テンプレート:Ouvrage, SECTION III, chapitre 3, § 360 p 162.

テンプレート:Abstract-algebra-stub