「病的な (数学)」の版間の差分

提供: miniwiki
移動先:案内検索
ja>Kuzuryu66
(病的な例: 非正数次元図形→非整数次元図形 typo修正しました)
 
(1版 をインポートしました)
 
(相違点なし)

2018/8/19/ (日) 17:21時点における最新版

数学における病的な(びょうてきな、英語: pathological; 病理学的な)事象とは、その性質が変則的に悪質であったり、直感に反すると見なされるようなもののことを言う。対義語には行儀の良いEnglish版 (well-behaved) というものがある。

概説

反例によってある定理の有用性が脅かされた時に、その有用性を主張する立場の者が、そのような例は病的である、と述べることがしばしばある。有名な反例に、アレクサンダーの角付き球面と呼ばれるものがある。それは、『空間 R3 への球面 S2 の位相的埋め込みは、「行儀の悪い」挙動が生じる可能性を防ぐための追加条件が課されない限り、空間を「きれいに」分割するとは限らない』、という例である(ジョルダン-シェーンフリースの定理English版を参照されたい)。

病的な事象を探す研究者は、特に解析学集合論の分野においては、広く応用可能な一般的な定理を見つけることよりも、既存の定理の不完全さを指摘することに興味を覚えるような実験主義者English版であると言うことが出来るかも知れない。それらのいずれの活動も、数学の発展上重要な役割を担っている。

病的な関数

「病的な関数」の古典的な例の一つに、至る所で連続であるが至る所微分不可能な、ワイエルシュトラス関数と呼ばれるものがある。微分可能な関数とワイエルシュトラス関数の和は、ふたたび至る所で連続であるが至る所微分不可能な関数となるため、そのような病的な関数は少なくとも微分可能な関数と同じだけ存在することが分かる。実は、ベールのカテゴリー定理により、「ほとんどすべての」連続関数は至る所で微分不可能であるということが示される。

平たく言えば、これは考え得る関数が非常にたくさん存在することが原因である。大部分は至る所微分不可能であり、描いたり研究したりできる関数は比較的稀で、そのうち興味があったり有用であるものは「行儀が良い」関数でもあることが分かる。

病的な例

病的な例はしばしば幾らかの好ましくないかまたは珍奇な特性をもつ。その特性は或る理論の中では有意義を成り立たせるように説明するのが難しい。そのような病的な振る舞いはしばしば新しい理論とより一般的な結果をもたらす新しい研究を促す。たとえば、これらの幾つかの重要な歴史的な例は次のようである:

である。

これらが発見された時点では、それらの各々は極めて病的と考えられた;今日では、各々は現代の数学の理論の中では消化済みである。

関連項目

参考文献

外部リンク

テンプレート:病的な関数の一覧