「無理数」の版間の差分

提供: miniwiki
移動先:案内検索
ja>新木巧
 
 
(同じ利用者による、間の5版が非表示)
1行目: 1行目:
'''無理数'''(むりすう、 {{lang-en-short|''irrational number''}})とは、[[有理数]]ではない[[実数]]、つまり分子・分母ともに[[整数]]である[[分数]]([[比]] = {{lang-en-short|''ratio''}})として表すことのできない実数を指す。実数は非[[可算]]個で有理数は可算個であるから、[[ほとんど (数学)|ほとんど全ての]]実数は無理数である。
+
'''無理数'''(むりすう、 {{lang-en-short|''irrational number''}})
 
 
無理数という語は、「何かが無理である数」という意味に誤解されやすいため、語義的に「無比数」と訳すべきだったという意見もある<ref>堀場芳数『無理数の不思議』[[講談社]]、1993年 ISBN 978-4061329782</ref><ref>吉田武『[[レオンハルト・オイラー|オイラー]]の贈物 人類の至宝[[オイラーの等式|e<sup>i&pi;</sup>=-1]]を学ぶ』[[学校法人東海大学出版会|東海大学出版会]]、2010年 ISBN 978-4486018636</ref><ref>吉田武『[[虚数]]の情緒 中学生からの全方位独学法』東海大学出版会、2000年 ISBN 978-4486014850</ref>。
 
[[Image:Square root of 2 triangle.svg|right|thumb|√{{overline|2}} は無理数である。]]
 
 
 
== 無理数の例・判定法 ==
 
[[2の平方根]]は無理数である。一般に ''m'' が 1 より大きい整数ならば、整数 ''N'' の [[冪根|''m'' 乗根]]はそれが整数でなければ無理数である。また、log{{sub|''m''}} ''n''(''m'', ''n'' は整数, ''m'' > 0, ''m'' ≠ 1, ''n'' > 0) の形の数が有理数であるならば、''m'' = ''N{{sup|a}}'', ''n'' = ''N{{sup|b}}'' を満たす整数 ''N'', ''a'', ''b'' が存在する。したがって log{{sub|2}} 3, log{{sub|2}} 5 のような数は無理数である。
 
 
 
[[ネイピア数]] ''e'' や[[円周率]] {{π}}、また [[ゲルフォントの定数]] ''e''{{sup|{{π}}}} やアペリーの定数 ''ζ''(3) のような数も無理数であることが知られている。詳しくは後述する歴史の項を参照。
 
 
 
小数部分が循環しない[[無限小数]]で表される数は常に無理数である。よって、正の[[整数]]を小さいほうから順番に並べた小数である[[チャンパーノウン定数]]
 
:0.123456789101112…
 
[[素数]]を小さいほうから順に並べた小数である[[コープランド-エルデシュ定数]]
 
:0.2357111317192329…
 
(共に[[位取り記数法|基数]]が 10 のとき)なども無理数である。
 
 
 
任意の ''ε'' > 0 に対して不等式
 
:<math>0<\left| \alpha -\frac{p}{q} \right| <\frac{\varepsilon}{q}</math>
 
が有理数解 {{sfrac|''p''|''q''}} を持つとき、''α'' は無理数である。多くの無理性の証明はこれを用いている。これは ''α'' が無理数であるための必要条件でもある。
 
 
 
== 性質 ==
 
無理数を[[十進記数法|十進]][[小数]]で表記すると、繰り返しのない[[無限小数]]になる。これは[[位取り記数法|位取りの基数]]によらず一般の ''N'' 進小数にも当てはまる。
 
 
 
''α'' を無理数とすると、
 
:<math>\left| \alpha -\frac{p}{q} \right| <\frac{1}{q^2}</math>
 
を満たす無限に多くの有理数 {{sfrac|''p''|''q''}} が存在する([[ディリクレのディオファントス近似定理|ディリクレの定理]])。なお、このように無理数の有理数による近似を扱う理論は[[ディオファントス近似]]と呼ばれる[[数論]]の分野に属する。
 
 
 
無理数全体の空間を完備とするような距離が存在する。またA-演算が自然に応用できる例でもあり、此の空間は点集合論的トポロジーでは重要な対象である。
 
 
 
== 代数的無理数と超越数 ==
 
無理数のうち、[[代数的数]]であるものを代数的無理数、そうでないものを[[超越数]]という。
 
 
 
''α'' が代数的数、''κ'' > 2 ならば、
 
:<math>\left| \alpha -\frac{p}{q} \right| <\frac{1}{q^{\kappa}}</math>
 
を満たす有理数 {{sfrac|''p''|''q''}} は有限個しかない([[トゥエ・ジーゲル・ロスの定理|トゥエ-ジーゲル-ロスの定理]]<ref>{{Cite book|和書
 
|author    = [[ピーター・フランクル]]
 
|year      = 2001
 
|title    = ピーターフランクルの中学生でも分かる大学生にも解けない数学問題集1
 
|publisher = 日本評論社
 
|pages= 10p
 
|id      = ISBN 4-535-78262-8}}</ref>。このことは[[不定方程式]]の解の有限性を示すときに使われる。
 
 
 
2の平方根は代数的無理数であり、log{{sub|2}} 3, ''e'', {{π}}, ''e''{{sup|{{π}}}} といった数は超越数である。''ζ''(3) が超越数であるか否かは未だに解決されていない。
 
{{main|超越数}}
 
 
 
== 無理数度 ==
 
数 ''α'' に対して
 
:<math>\left| \alpha -\frac{p}{q} \right| <\frac{1}{q^{\kappa}}</math>
 
を満たす有理数 {{sfrac|''p''|''q''}} は有限個しかない、という性質を満たす ''κ'' の下限を ''α'' の'''無理数度''' ({{lang-en-short|''irrationality measure''}}) という。
 
 
 
有理数の無理数度は 1, ディリクレの定理およびロスの定理より代数的無理数の無理数度は 2, [[リウヴィル数]]の無理数度は ∞ である。ディリクレの定理より無理数の無理数度は全て 2 以上である。''e'' の無理数度は 2 であることが知られている。
 
 
 
ルベーグ測度に関してほとんど全ての数の無理数度は 2 である。
 
 
 
== 歴史 ==
 
無理数の発見は古代ギリシャにまでさかのぼる。[[ピタゴラス教団]]は数を長さとして現れるものに限って議論し、すべての数は有理数で表されるとし、これは教団の教義として信奉された。しかし[[ピタゴラスの定理]]からも示されるように[[2の平方根]]が無理数であることも自明であったが、教義に反するため受け入れられず、このことは今日から見れば自ずから制約を課せられていたと見なせる。無理数の発見を公言した[[ヒッパソス]]は、教団から追放され殺害されたとする伝説が残る。
 
 
 
しかし[[プラトン]]が現れると、彼の著書『テアイテトス』の中で平方数でない数の平方根が有理数でないことを論じ、さらに同じ論法が立方根にも適用できると述べている。これらの数学的な蓄積を受けて、[[エウクレイデス]]は『原論』の中で統一した形で実数論を展開している。
 
 
 
すでに円周の長さが3より少し大きいことも知られていた。古代インドやギリシアの数学者たちの間では半径 ''r'' の円の面積が[[円周率]] {{π}} を使って {{π}}''r''{{sup|2}} であることも知られ、[[アルキメデス]]は半径 r の球の体積が {{sfrac|4|3}}{{π}}''r''{{sup|3}} であることや、この球の表面積が 4{{π}}''r''{{sup|2}} (その球の大円の面積の4倍)であることを示していた。円周率 {{π}} が無理数であることはすでに[[アリストテレス]]によって予想されていたが、実際に証明されたのはそれよりはるかに後の時代のことである([[ヨハン・ハインリヒ・ランベルト]])。
 
 
 
自然対数の底である[[ネイピア数]] ''e'' は、1618年に[[ジョン・ネイピア]]が発表した対数の研究の付録の表にその端緒があるが、定性的に研究したのは[[レオンハルト・オイラー]]である。
 
 
 
1872年に[[リヒャルト・デデキント]]は『連続性と無理数』を出版し、[[デデキント切断]]を用いて無理数を定義した。
 
 
 
[[リーマンゼータ関数]]の特殊値 ''ζ''(3) は、[[ロジェ・アペリー|アペリー]]によって1979年に無理数であることが証明された([[アペリーの定数]])。{{π}} + ''e''{{sup|{{π}}}} は、ネステレンコ ([[:en:Yuri Valentinovich Nesterenko]]) によって無理数であることが証明された。
 
 
 
== 未解決の問題 ==
 
[[オイラー定数]] ''γ'', {{π}} + ''e'', ''e''{{π}}, その他 ''P''(''e'', {{π}})(''P''(''X'', ''Y'') は ''X'', ''Y'' 双方について次数が 1 以上である多項式)は有理数であるか無理数であるか知られていない。''e{{sup|e}}'', {{π}}{{sup|''e''}}, {{π}}{{sup|{{π}}}} といった数も同様である。
 
 
 
== 脚注 ==
 
<references />
 
 
 
== 参考文献 ==
 
*塩川宇賢:『無理数と超越数』[[森北出版]]、ISBN 978-4627060913、(1999年)。
 
*[[リヒャルト・デデキント|デーデキント]]『数について 連続性と数の本質』河野伊三郎訳、[[岩波書店]]、 ISBN 4-00-339241-8、(1961年)。
 
*W. M. Schmidt, "Diophantine Approximations", Lecture Notes in Math. 785, Springer-Verlag, 1980.
 
*W. M. Schmidt, "Diophantine approximations and diophantine equations", Lecture Notes in Math. 1467. Springer-Verlag, 1991.
 
*R. Apéry, "Irrationalité de ζ(2) et ζ(3)", Astérisque 61(1979), 11-13.
 
*A. van der Poorten, "A Proof that Euler Missed... Apéry's Proof of the Irrationality of ζ(3)", Math. Intel. 1 (1979), 196-203.
 
*ジュリアン・ハヴィル, 松浦俊輔 (訳):「無理数の話 √2の発見から超越数の謎まで」、青土社、ISBN 978-4791766758、(2012年10月24日)。
 
*西岡久美子:「超越数とはなにか 代数方程式の解にならない数たちの話」、講談社 (ブルーバックス)、ISBN 978-4062579117、(2015年4月21日)。
 
 
 
== 関連項目 ==
 
{{commonscat|Irrational numbers}}
 
{{Wiktionary|無理数}}
 
*[[有理数]]
 
*[[平方根]]
 
*[[超越数]]
 
*[[円周率の無理性の証明]]
 
*[[ネイピア数の無理性の証明]]
 
*[[アペリーの定理]]
 
 
 
== 外部リンク ==
 
*{{MathWorld|title=Irrational Number|urlname=IrrationalNumber}}
 
  
 +
[[整数]]&nbsp;<i>p</i> と 0でない整数 <i>q</i> を用いて,[[ファイル:11821300 siki0.gif|フレームなし]]と表すことができる数を有理数といい,有理数でない[[実数]]を無理数という。[[小数]]では,無理数は循環([[循環小数]])しない無限小数として表される。√2=1.41421356…,[[円周率]]π=3.14159265…,[[自然対数]]の[[底]]&nbsp;<i>e</i>=2.7182818…などは無理数であることが知られている。実数は,有限小数または無限小数として表される数で,[[数直線]]上の点と一対一に対応するが,有理数から出発して,[[収束]]する有理数列の極限を付け加えることによって構成される。厳密な構成法としては,コーシー列([[コーシーの条件]])を用いて完備化する方法,[[ユリウス・W.R.デデキント]]が導入した[[切断]]による方法などがある。有理数を[[係数]]とする[[代数方程式]]の解となる数を[[代数的数]]といい,そうでない実数を[[超越数]]と呼ぶ。超越数は無理数である。上の無理数の例のうち,√2は方程式 <i>x</i><sup>2</sup>-2=0 の解の一つであるから代数的数である。円周率π,自然対数の底 <i>e</i> は超越数であることが知られている。
 +
 
{{デフォルトソート:むりすう}}
 
{{デフォルトソート:むりすう}}
 
[[Category:数]]
 
[[Category:数]]

2018/12/22/ (土) 22:21時点における最新版

無理数(むりすう、 : irrational number

整数 p と 0でない整数 q を用いて,11821300 siki0.gifと表すことができる数を有理数といい,有理数でない実数を無理数という。小数では,無理数は循環(循環小数)しない無限小数として表される。√2=1.41421356…,円周率π=3.14159265…,自然対数 e=2.7182818…などは無理数であることが知られている。実数は,有限小数または無限小数として表される数で,数直線上の点と一対一に対応するが,有理数から出発して,収束する有理数列の極限を付け加えることによって構成される。厳密な構成法としては,コーシー列(コーシーの条件)を用いて完備化する方法,ユリウス・W.R.デデキントが導入した切断による方法などがある。有理数を係数とする代数方程式の解となる数を代数的数といい,そうでない実数を超越数と呼ぶ。超越数は無理数である。上の無理数の例のうち,√2は方程式 x2-2=0 の解の一つであるから代数的数である。円周率π,自然対数の底 e は超越数であることが知られている。