アインシュタイン=ポドルスキー=ローゼンのパラドックス
アインシュタイン=ポドルスキー=ローゼンのパラドックス(頭文字をとってEPRパラドックスとも呼ばれる)は、量子力学の量子もつれ状態が局所性を(ある意味で)破るので、相対性理論と両立しないのではないかというパラドックスである。アルベルト・アインシュタイン、ボリス・ポドルスキー、ネイサン・ローゼンらの思考実験にちなむ。
EPRパラドックスが発表された当時は、アインシュタインらは局所実在論の立場を取っていたため、量子論が実在論的に完全でない結果を与えることを「パラドックス」であるとした。しかし、ベルの不等式の検証(1982年)などにより、量子論では局所実在論が破綻することが明らかになっており、非局所的な量子もつれ状態はEPR相関と呼ばれている。
概要
文献に頻出するのはニールス・ボーアによる議論であるので、そちらのほうを用いて説明する。
最初に、「ある観測を行ったとき、必ずある値が得られるような状態があるとする。その場合、その値に対応する何かが実在している」ということを仮定する。例えば、運動量の固有状態を測定すると、必ずその固有値を返す。この場合、運動量の固有値が存在しているという考え方である。
次に、スピン0の素粒子が崩壊して、二つの電子になる場合を考える。重心系で見れば、二つの電子は互いに異なる方向に飛んでいく。従って、十分時間が経てば、二つの電子が空間的に十分離れている状態になる。この時、一方のスピンを測定したとする。この時、波束の収縮が起きるはずであるが、その影響は光速を超えて伝わることはないと仮定する。従って、短い時間ならば、他方への影響を無視できるはずである。
角運動量保存則より、(和が0でなくてはならないので)二つの電子のスピンの方向は正反対でなくてはならない。従って、他方のスピンは、必ず測定結果と逆の値を返すことになる。最初の仮定より、他方の実験結果に対応する何かが実在するはずである。
一方のスピンの測定方向は任意に選べるので、他方のあらゆる実験結果に対応する何かが実在している。これは、まさに隠れた変数理論を示唆している。つまり、真の理論は決定論的であるが、十分な知見が得られないために確率的な予言しかできないというものである。この立場では、量子力学は統計的記述としての有効性しか持たないことになる。
なお、元々のEPRの論文では、位置と運動量を同時確定する系を作っている。いずれの系も量子もつれ状態である。
相対論との関係
上述では、波束の収縮の影響は光速を超えないと仮定した。実は、その仮定が怪しく、波束の収縮の影響は光速を超えて伝達し、従って、隠れた変数の存在を示唆しないという反論がなされた。
しかしながら、相対論によると、光速を超える相互作用は因果律を破るため禁じられており、この点で、量子論との矛盾を示唆しているように思われる。このことをさして、パラドックスと称される。
実験的検証と現状
ジョン・スチュワート・ベルは、もし隠れた変数が存在するならば成り立つであろう不等式(ベルの不等式)を導いた。アラン・アスペは、2個の光子を使った実験で、ベルの不等式が成立しないことを示し、隠れた変数の存在は否定された。したがって現在では、「EPRパラドックス」ではなく「EPR相関」と呼ばれ、実際に起きる相関関係として理解されている[1]。
このような非局所性は量子もつれ状態特有の現象として理解され、量子テレポーテーションや量子暗号などの最先端の技術の理論的な基礎となっている。
脚注・出典
- ↑ 矢沢サイエンスオフィス 『大科学論争』 学習研究社〈最新科学論シリーズ〉、1998年、85頁。ISBN 4-05-601993-2。
参考文献
- A. Einstein; B. Podolsky, and N. Rosen (1935). “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”. Phys. Rev. (The American Physical Society) 47 (10): 777–780. doi:10.1103/PhysRev.47.777 .