遠アーベル幾何学

提供: miniwiki
移動先:案内検索

遠アーベル幾何学(Anabelian geometry)は数学の理論であり、代数多様体 V 上の代数的基本群English版(algebraic fundamental group) G や関連する幾何学的対象を記述する。また、V をどのように他の幾何学的対象 W へ写像することができるかを決定する。いずれもより詳細な意味は、G がアーベル群から非常に遠い場合を前提とするという意味である。単語としての遠アーベル(アーベルの前に、接頭語である an がついたもの)は、1980年代のアレクサンドル・グロタンディーク(Alexander Grothendieck)の有名な著作であるEsquisse d'un Programmeで導入された[1]

グロタンディークの仕事は、多くの年月の間未出版であり、伝統的で公式の学術チャンネルを通しては入手できなかったが、提示された理論の定式化と予想は多くの注目を集め、多くの数学者の点により言い換えられている。この分野の研究者は、期待された結果や関連する結果を得ており、21世紀にはそのような理論が有効となり始めると期待される。

曲線上のグロタンディークの予想の定式化

「遠アーベル的問題」とは次のように定式化される。

多様体 X の同型類についてのどのくらいの情報が、エタール基本群English版(etale fundamental group)の知識には含まれているのであろうか?[2]

具体例は、多様体が射影的と同様にアフィン的な場合である。有限生成な体 K (その上の素体)上に定義された滑らかで既約な場合を想定し、与えられた双曲線 C に対し、つまり、種数 g の射影代数曲線内の n 個の点の補空間に対し、

2 – 2g – n < 0

とする。グロタンディークは、射有限群である C の代数的基本群 G が C 自身を決定する(つまり G の同型類が C の同型類を決定する)と予想した。このことは望月新一により証明された[3] g = 0(射影直線)で n = 4 の場合の例が与えられ、このとき、C の同型類が K の中の削除される 4つの点の連比により決定される。(ほとんど、連比で 4つの点の順序であるが、点を取り去ると存在しない。)[4] K が局所体の場合の結果もある[5]

関連項目

脚注

  1. Alexander Grothendieck, 1984. "Esquisse d'un Programme", (1984 manuscript), published in "Geometric Galois Actions", L. Schneps, P. Lochak, eds., London Math. Soc. Lecture Notes 242, Cambridge University Press, 1997, pp. 5–48; English transl., ibid., pp. 243–283.
  2. http://www.math.jussieu.fr/~leila/SchnepsLM.pdf, p. 2.
  3. S. Mochizuki, The profinite Grothendieck conjecture for hyperbolic curves over number fields, J. Math. Sci. Univ. Tokyo 3 (1996), 571–627.
  4. http://www.math.okayama-u.ac.jp/~h-naka/zoo/lion/INanabel.pdf, p. 2.
  5. http://www.math.uiuc.edu/documenta/vol-kato/mochizuki.dm.pdf

外部リンク