超楕円曲面
数学では、超楕円曲面(hyperelliptic surface)、あるいは双楕円曲面(bi-elliptic surface)は、楕円曲線上の楕円ファイバー(elliptic fibration)を持つ曲面である。すべてのそのような曲面は、有限アーベル群による 2つの楕円曲線の積の商として記述できる。超楕円曲面は、エンリケス・小平の分類の中の小平次元 0 の曲面のひとつのクラスである。
不変量
小平次元は 0 である。
ホッジダイアモンドは、次の形となる。
1 1 1 0 2 0 1 1 1
分類
超楕円曲面は、商 (E×F)/G である。ここに E = C/Λ であり F は楕円曲線で、G は F ( F の作用)の部分群である。次の表に示すように、超楕円曲面には 7つの族がある。
K の位数 | Λ | G | E 上の G の作用 |
---|---|---|---|
2 | 任意の | Z/2Z | e → −e |
2 | 任意の | Z/2Z ⊕ Z/2Z | e → − e, e → e + c, −c = c |
3 | Z ⊕ Zω | Z/3Z | e → ωe |
3 | Z ⊕ Zω | Z/3Z ⊕ Z/3Z | e → ωe, e → e + c, ωc = c |
4 | Z ⊕ Zi; | Z/4Z | e → ie |
4 | Z ⊕ Zi | Z/4Z ⊕ Z/2Z | e → ie, e → e + c, ic = c |
6 | Z ⊕ Zω | Z/6Z | e → −ωe |
ここに ω は 1 の 3乗根であり、i は 1 の 4乗根である。
準超楕円曲面
準超楕円曲面(quasi-hyperelliptic surface)は、その標準因子が 0 に数値的に同値であり、楕円曲線へのアルバネーゼ写像とすべてのファイバー(fiber)がカスプ(cusp)を持ち有理的であるような代数曲面である。準超楕円曲面は、標数が 2 や 3 のときにのみあり得る。第二ベッチ数は 2 で、第二チャーン数は 0 であり、正則オイラー標数(holomorphic Euler characteristic)は 0 である。準超楕円曲面は、{{#invoke:Footnotes | harvard_citation }} により分類され、彼は標数が 3 のとき6つの場合があることを発見した(この場合は 6K = 0)であり、標数 2 の場合は 8つの場合がある(この場合は、6K あるいは、4K が 0 となる)ことを発見した。準超楕円曲面は、商 (E×F)/G である。ここに E はカスプを持つ有理曲線であり、F は楕円曲線、G は F の(F の作用による)有限部分群スキーム(subgroup scheme)である。
参考文献
- Barth, Wolf P.; Hulek, Klaus; Peters, Chris A.M.; Van de Ven, Antonius (2004), Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 4, Springer-Verlag, Berlin, ISBN 978-3-540-00832-3, MR 2030225 - the standard reference book for compact complex surfaces
- Beauville, Arnaud (1996), Complex algebraic surfaces, London Mathematical Society Student Texts, 34 (2nd ed.), Cambridge University Press, ISBN 978-0-521-49510-3, MR 1406314, ISBN 978-0-521-49842-5
- Bombieri, Enrico; Mumford, David (1976), “Enriques' classification of surfaces in char. p. III.”, Inventiones Mathematicae 35: 197–232, doi:10.1007/BF01390138, ISSN 0020-9910, MR 0491720
- Bombieri, Enrico; Mumford, David (1977), “Enriques' classification of surfaces in char. p. II”, Complex analysis and algebraic geometry, Tokyo: Iwanami Shoten, pp. 23–42, MR 0491719