リース平均

提供: miniwiki
移動先:案内検索

数学におけるリース平均(リースへいきん、: Riesz mean)とは、ある級数に関する項の平均のことを言う。1911年、リース・マルツェルによってチェザロ平均を改善するものとして導入された[#endnote_Rie11][#endnote_Hard16]ボホナー=リース平均English版や強リース平均(strong-Riesz mean)とは異なる。

定義

級数 [math]\{s_n\}[/math] に対するリース平均は、次で定義される。

[math]s^\delta(\lambda) = \sum_{n\le \lambda} \left(1-\frac{n}{\lambda}\right)^\delta s_n [/math]

しばしば次の一般化リース平均も用いられる。

[math]R_n = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k-\lambda_{k-1})^\delta s_k. [/math]

ここで [math]\lambda_n[/math] は、[math]n\to\infty[/math] に対して [math]\lambda_n\to\infty[/math][math]\lambda_{n+1}/\lambda_n\to 1[/math] を満たす数列である。それ以外の性質に関しては [math]\lambda_n[/math] は任意に選ばれる。

リース平均はしばしば、数列の総和可能性を調べるために用いられる。総和可能性に関する典型的な定理では、ある列 [math]\{a_n\}[/math] に対して [math]s_n = \sum_{k=0}^n a_n[/math] となる場合が扱われる。通常、列が総和可能であるための十分条件は、極限 [math]\lim_{n\to\infty} R_n[/math] あるいは [math]\lim_{\delta\to 1,\lambda\to\infty}s^\delta(\lambda)[/math] が存在することである。ただし厳密には追加条件が課されることもしばしばある。

特別な場合

すべての [math]n[/math] に対して [math]a_n=1[/math] の場合を考える。このとき

[math] \sum_{n\le \lambda} \left(1-\frac{n}{\lambda}\right)^\delta = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(1+\delta)\Gamma(s)}{\Gamma(1+\delta+s)} \zeta(s) \lambda^s \, ds = \frac{\lambda}{1+\delta} + \sum_n b_n \lambda^{-n} [/math]

となる。ここで [math]c\gt 1[/math] であり、[math]\Gamma(s)[/math]ガンマ函数[math]\zeta(s)[/math]リーマンゼータ函数である。冪級数

[math]\sum_n b_n \lambda^{-n}[/math]

は、[math]\lambda \gt 1[/math] に対して収束することが示される。この形式の積分はメリン逆変換であることに注意されたい。

その他、数論と関連する興味深いケースは、フォン・マンゴールト函数English版 [math]\Lambda(n)[/math] に対して [math]a_n=\Lambda(n)[/math] とすることで得られる。このとき

[math] \sum_{n\le \lambda} \left(1-\frac{n}{\lambda}\right)^\delta \Lambda(n) = - \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(1+\delta)\Gamma(s)}{\Gamma(1+\delta+s)} \frac{\zeta^\prime(s)}{\zeta(s)} \lambda^s \, ds = \frac{\lambda}{1+\delta} + \sum_\rho \frac {\Gamma(1+\delta)\Gamma(\rho)}{\Gamma(1+\delta+\rho)} +\sum_n c_n \lambda^{-n} [/math]

となる。ここで再び c > 1 であり、ρ についての和はリーマンゼータ函数の零点についての和を意味し、

[math]\sum_n c_n \lambda^{-n} \, [/math]

λ > 1 に対して収束する。

ここで現れる積分はネアルン=ライス積分に似たものである。非常に大雑把に言うと、それらはペロンの公式English版によって関連付けられる。

関連項目

参考文献

{{ safesubst:#invoke:Unsubst||$N=Use dmy dates |date=__DATE__ |$B= }}