人工衛星

提供: miniwiki
2018/5/11/ (金) 00:22時点におけるja>Tribotによる版 (bot: WP:BOTREQ Special:PermaLink/68516886#sorae.jpのsorae.infoへのドメイン変更)
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
移動先:案内検索
GPS衛星の軌道アニメーション

人工衛星(じんこうえいせい)とは、惑星、主に地球軌道上に存在し、具体的な目的を持つ人工天体。地球では、ある物体をロケットに載せて第一宇宙速度(理論上、海抜0 mでは約 7.9 km/s = 28,400 km/h[注 1])に加速させることで、地球の重力と重力から脱出しようとする遠心力とが釣り合い、その物体は地球周回軌道を回り続ける人工衛星となる[1]。ただし軌道上を周回し続けていても、目的を持たない使用済みロケットの残骸や人工衛星の破片などはスペースデブリとして区別される。また、惑星以外の軌道(月周回軌道太陽周回軌道)を周回する人工天体は宇宙探査機と呼ばれ、一般に区別される。

有人宇宙船宇宙ステーションスペースシャトルも人工衛星に含まれ、アメリカ航空宇宙局等の人工衛星軌道データに掲載もされるが、これらについて触れる際には人工衛星とは呼ばれないのが一般的である。

人類初の人工衛星は、1957年ソビエト連邦が打ち上げたスプートニク1号である。21世紀初頭までに、数千もの人工衛星が地球周回軌道に打ち上げられた。

人工衛星の用途は多岐にわたり、一般的なものは、軍事衛星偵察衛星通信衛星放送衛星地球観測衛星航行衛星気象衛星科学衛星アマチュア衛星などである。

人工衛星は地球を周回する軌道にあるものが大部分であるが、惑星探査目的で火星土星などの他の惑星の軌道上にも観測機がいくつか到達しており、各惑星の人工衛星となっている。これらは惑星の観測を行ったり、火星探査機などのように他惑星の表面に着陸した宇宙探査機からの各種観測データを地球まで中継送信している。

歴史

構想

参照: 宇宙開発

人工衛星がフィクション内で初めて描かれたのはエドワード・エヴァレット・ヘイルEnglish版の短編小説、『レンガの月English版』である。この話はThe Atlantic Monthly にて1869年からシリーズ化された[2][3]。この概念が次に登場したのは1879年、ジュール・ヴェルヌの『インド王妃の遺産English版』である。

1903年コンスタンチン・ツィオルコフスキーは「反作用利用装置による宇宙探検」(ロシア語: Исследование мировых пространств реактивными приборами)を出版。これは宇宙船を打ち上げるためのロケット工学に関する最初の学術論文だった。ツィオルコフスキーは地球の回る最小の軌道に求められる軌道速度を8km/sと計算し、液体燃料を使用した多段式ロケットならば達成可能であることを示した。また、彼は液体水素液体酸素の使用を提案した。

1928年、スロベニアヘルマン・ポトチェニクEnglish版The Problem of Space Travel — The Rocket Motorドイツ語: Das Problem der Befahrung des Weltraums — der Raketen-Motor)を出版し、宇宙旅行と人間の永続的滞在性について述べた。彼は宇宙ステーションを発想し、ステーションの静止軌道計算を行った。彼はまた、人工衛星が平和的・軍事的に地上の観測に使用できることを詳細に記述し、宇宙空間の特殊な状態が科学実験に有意であることや、静止衛星を通信などに利用できることについても述べた。

1945年、アーサー・C・クラークは雑誌ワイヤレス・ワールドEnglish版上で、通信衛星を用いたマスコミュニケーションの可能性を詳細に記述した[4]。また、クラークは人工衛星打ち上げの計画、可能な衛星軌道などについても調査し、3機の静止軌道衛星で地球全体をカバーすることを提案した。

人工衛星の誕生

ファイル:Sputnik asm.jpg
スプートニク1号:世界初の人工衛星

第二次世界大戦中に開発されたドイツV2ロケットの技術とその技術者たちによって、アメリカとソ連のロケット技術は急速な進歩を成し遂げ、人工衛星が現実のものとなりつつあった。

アメリカ合衆国は、1945年より海軍航空局English版の下、人工衛星の打ち上げを検討してきた。1946年5月に米空軍のランド研究所が提出した報告書、「実験周回宇宙船の予備設計」(Preliminary Design of a Experimental World-Circling Spaceship )には「適当な装置を搭載した人工衛星は20世紀の最も強力な科学ツールの一つになりうる」と述べられており[5]、人工衛星が軍事的重要性を持つとは思っておらず、むしろ科学的、政治的、プロパガンダ的なものと当時見なしていた。アメリカ国防長官チャールズ・E・ウィルソン1954年「私は国内の人工衛星計画を知らない」(I know of no American satellite program)と述べた[6]

1955年7月29日ホワイトハウス1958年の春までに人工衛星を打ち上げると発表した。これはヴァンガード計画として知られるようになる。同年7月31日、ソ連は1957年の秋までに人工衛星を打ち上げると発表した。

セルゲイ・コロリョフと助手のケリム・ケリモフEnglish版が率いるソ連のスプートニク計画が始まり、1957年10月4日初の人工衛星「スプートニク1号」が打ち上げられた[7]。スプートニク1号はその軌道変化を分析することによって大気上層の密度の確認に役立ち、電離層の無線信号外乱のデータを提供した。衛星の機体は加圧された窒素で満たされており、地球に送信された温度データから隕石が機体表面を貫通し、内圧が低下したことがわかった。これは初の流星物質の探知であった。

この突然の成功がアメリカ合衆国スプートニク・ショックを引き起こし、その後のアメリカとソ連の熾烈な宇宙開発競争に繋がっていった。

スプートニク1号から3年半が経過した1961年6月、米空軍は米国宇宙監視ネットワークEnglish版のリソースを利用し、115の人工衛星の目録を作成した[8]

宇宙監視網

米国宇宙監視ネットワーク (SNN) は1957年より宇宙天体を追跡しており、2008年現在8,000以上の人工天体を追跡している。軌道上に存在する人工物は数トンの人工衛星から5キログラムのロケットの部品まで様々である。これらの7パーセントは運用中の人工衛星であり、それ以外は全てスペースデブリである[9]

SNNは直径10センチ以上の物体を追跡している。アメリカ戦略軍は主に活動中の衛星に関心を持つが、ミサイルの接近と誤認しないように再突入するであろうスペースデブリも追跡している。

非軍事衛星業務

非軍事的な人工衛星の業務は基本的に3種類存在する[10]

固定衛星サービス

固定サービス衛星English版は国や大陸をはさんで、特定の地点間の何千億もの音声、動画、データ通信タスクを処理している。

モバイル衛星システム

モバイル衛星システムは辺境にある自動車や船舶、飛行機、人々にナビゲーションシステムとして利用されることだけでなく、世界の違う場所にいる、もしくは他のモバイル・固定通信装置と通信することに使用される。

科学観測衛星(営利・非営利)

科学観測衛星は気象情報や地上情報、といった地球科学的、海洋学的、大気学的調査に利用される。

人工衛星の分類

目的による分類

それ以外の分類

構想

軌道の種類

参照: 人工衛星の軌道
ファイル:Orbits around earth scale diagram.svg
                     国際宇宙ステーションの軌道                      GPS衛星                      対地同期軌道

世界初の人工衛星スプートニク1号地球周回軌道に打ち上げられた。現在、この種類の軌道が最も一般的なので、軌道名に地球を省略することが多い。地球周回軌道はさらに、高度、軌道傾斜角、軌道離心率によって分類される。

中心による分類

高度による分類

  • 低軌道 (LEO) - 高度2,000km以下の地球周回軌道。国際宇宙ステーションなどはこの軌道に存在する。
  • 中軌道 (MEO) - 高度2,000kmから地球同期軌道(35,786km)までの地球周回軌道。
  • 高軌道 (HEO) - 地球同期軌道より外の地球周回軌道。

軌道傾斜角による分類

  • 傾斜軌道 - 衛星の軌道傾斜角が惑星の赤道に対して傾いている軌道。
    • 極軌道 - 惑星の、または極近傍の上空を通過する軌道。よって軌道傾斜角は90°近くなる。
    • 太陽同期軌道 - 極軌道に近く、赤道を常に同じ現地時間で通過する軌道。が常に同じ場所にできるので画像の撮影に便利である。
  • 順行軌道 - 軌道傾斜角が90°以下の軌道。惑星の自転と同方向に周回する。
  • 逆行軌道 - 軌道傾斜角が90°以上の軌道。惑星の自転方向とは逆向きに周回する。太陽同期軌道は別にして、燃料の問題で逆行軌道に投入される衛星はほとんど無い。なぜなら、地球からロケットを打ち上げる際、飛翔体はすでに射場の緯度と同じ自転速度分を得ているからである。

離心率による分類

ファイル:Geostational-Transfer-Orbit.png
静止トランスファ軌道と静止軌道

周期性による分類

  • 回帰軌道 - 1日のうちに惑星を何度か周回し、1日後の同じ時刻に元の地表面上空に戻る軌道。惑星の自転周期が衛星の公転周期の整数倍になっている。
  • 準回帰軌道 - 1日のうちに地球を何度か周回し、その日のうちには戻らないが、定数日後に元の地表面上空に戻る軌道。
  • 太陽同期軌道 - 人工衛星の軌道面と太陽光線との角度が常に一定の角度であるような軌道。太陽光が常に利用でき、地表に対して常に太陽光線の角度が一定なので、地球観測衛星に用いられている。
ファイル:Hohmann transfer orbit.svg
ホーマン遷移軌道 (2)。軌道 (1) から (3)、または逆に移動する。

擬似軌道

人工衛星の構成

人工衛星のシステムは「衛星系」と「地上支援系」により構成され[18]、この二つの間でアップリンクダウンリンクが行われる。衛星系は、その衛星特有のミッションを遂行するための「ミッション機器」と電力通信姿勢制御などの基本的な機能に必要な「バス機器」から構成される。また、地上支援系は人工衛星を追跡し、データを取得して運用・管制を行うための機器からなる[19]

衛星バス部

TTC系

TTCとはテレメトリ(衛星の動作状況を地上に送信)・トラッキング(軌道測定用信号の送受信)・コマンド(機器の電源のオンオフ、モード切替などの動作指令)機能のことである。しかし近年はコマンドは搭載された計算機により自動送信される場合が増えており、TTC系をC&DH系(コマンド・データハンドリング系)と呼ぶようになっている[19]

電源系

  • 太陽電池バッテリーシャント装置、電力制御機からなる。太陽電池は機体の表面、または太陽電池パドルに装着される。
  • かつては小型原子炉が人工衛星にも使われたことがあるが、現在はほぼ太陽電池が使用される。また太陽電池を装備せず、バッテリーのみの衛星も存在する。
  • 宇宙探査機では太陽電池が使えない事があるが、その場合は原子力電池など代替の電源を用意する。

姿勢制御系

人工衛星は、地球重力場のひずみ、月・太陽の引力、太陽風や希薄な空気分子など、地球の引力以外の微小な力を受け徐々に姿勢が変動する。姿勢安定には大きく分けて「スピン姿勢安定方式」と「三軸姿勢安定方式」があり、前者は構成が簡潔で、特殊な機器を必要としないため、宇宙開発の初期に多用されたが、形状が円筒形に限定され、太陽電池が円筒の表面にしか貼ることができない。後者は姿勢方向が自由に選択でき、縦型の大きな太陽電池パドルを取り付けられるなどの長所があるが、熱制御が複雑になるなどの短所もある[19]

推進系

  • 計画した軌道に衛星を投入しても、放置しておくと地球の重力異常や、太陽風による擾乱のために、徐々に軌道が変わっていく。そのため、スラスターを稼働させ、軌道制御を行う。
  • 偵察衛星の場合、偵察のために必要な軌道変更を行うためにも使われる。
  • 静止衛星の場合、静止トランスファー軌道から静止軌道に軌道変更するためのアポジ・モーターを搭載するが、それも推進系を構成する。
  • 静止衛星が寿命を全うし、残骸が貴重な静止軌道を占有することがないよう、最後に軌道高度を上昇させるためにも使用する。周回衛星が、地球に落下するとき、安全な突入軌道にするためにも使用できる。

構体系

衛星は打上げ時、分離時に大きな荷重・振動・衝撃を受ける。よって搭載機器への負担を軽減するように機体を設計する必要がある。中央円筒型、パネル支持型、トラス型などの構造があり、これらの複合により構成されることもある。材料としては強度が必要な箇所にはステンレス材チタンなどが使用される[19]

熱制御系

衛星は宇宙空間にて高温から低温の過酷な環境に晒される。また、真空である宇宙空間では輻射による廃熱しかない。そのため、搭載した機器が良好に動作するためには、動作温度に収まるよう上手く設計する必要がある。実際のハードウェアとしては、次のような手段を駆使して実現する。

静止衛星では、夏至冬至春分秋分の条件下で、太陽光の当たり具合や、地球からの輻射を考慮しながら、有限要素化した衛星の構造モデルを用いて設計解析する。

ミッション部

観測機器

ミッションを実現するための観測機器。詳細はそれぞれの人工衛星の項目を参照。

トランスポンダ

トランスポンダは通信・放送衛星の場合搭載される機器。地上から発射された電波を受信し、周波数変換し、大電力増幅して再び地上に送出するための送受信機。

アンテナ系

アンテナは電波の出入り口で、放送・通信ミッションやレーダー観測衛星で重要な役割を果たす。

地上管制系

参照: 地上局


衛星の廃棄

参照: ケスラーシンドローム

人工衛星の任務が終了に近づくと、衛星を現在の軌道から離脱するのか、そのままにしておくのか、墓場軌道まで動かすのかという選択肢がある。初期の人工衛星は予算的な都合によって軌道変更のための機能を持つことはほとんど無かった。たとえば、1958年に打ち上げられたヴァンガード1号は4番目に軌道に投入された衛星であるが、2009年8月現在も軌道上に存在し、最も長く軌道上に存在する衛星となっている[20]

現在、気象衛星をふくめ、静止軌道上の衛星は姿勢・軌道制御を行うためにスラスターを搭載している。スラスターの燃料が切れると衛星は静止軌道を保てなくなるため、寿命末期には静止軌道からさらに高度の軌道(墓場軌道)に上昇させ、停波・廃棄する。しかし、中には何らかの理由により軌道離脱ができず、スペースデブリと化す衛星もある[21]

地上にコントロールしがら落下させる際には、南太平洋上にある到達不能極ポイント・ネモ)に向けて落下させる[22]

人工衛星の軌道投入に成功した国・機関

このリストは、自国の打ち上げ機(ローンチ・ヴィークル)で人工衛星を軌道上に到達させることに成功した国のリストである。多くの国は人工衛星を設計・製造する能力を有するが、独自開発の打上げ機で人工衛星を打ち上げることができる国は、2013年1月末時点で9カ国(ロシアウクライナアメリカ日本中国インドイスラエルイラン北朝鮮)と1機関(欧州宇宙機関(ESA))のみであり、大多数の国々はこれら少数の国と機関に打ち上げ業務を依存することになる。

民間団体による打ち上げ能力

参照: 民間宇宙飛行
  • オービタル・サイエンシズトーラスロケットを用いた打ち上げを行っている。
  • 2008年9月28日、民間航空会社スペースXファルコン1ロケットの軌道への打ち上げに成功した。これは民間が建造した液体燃料ブースターが軌道に到達した初めてのことである[23]。ロケットは長さ1.5mの模型を軌道へ打ち上げた。このRatsatと呼ばれるダミー衛星は5年から10年で大気圏で燃え尽きる[23]。そのほかにも、数は少ないがいくつかの民間会社が弾道飛行可能なロケットを開発している。
  • アリアンスペース三菱重工業などは宇宙機関から業務移管されて人工衛星の打ち上げを行っている。

国別の最初の人工衛星

他国のロケットによるものを含めた その国初の人工衛星[24]
国・機関 初の
打ち上げ年
最初の人工衛星 軌道上にある衛星数[25]
2013年(2011年)時点
ソビエト連邦の旗 ソビエト連邦
ロシアの旗 ロシア
1957年
(1992年)
スプートニク1号
コスモス2175号
1,457 (1,446)
アメリカ合衆国の旗 アメリカ 1958年 エクスプローラー1号 1,110 (1,112)
イギリスの旗 イギリス 1962年 アリエル1号 0030 (28)
カナダの旗 カナダ 1962年 アルエット1号 0034 (32)
イタリアの旗 イタリア 1964年 サン・マルコ1号 0022 (18)
フランスの旗 フランス 1965年 アステリックス 0057 (49)
オーストラリアの旗 オーストラリア 1967年 WRESAT 0013 (12)
ドイツの旗 ドイツ 1969年 アズール 0042 (41)
日本の旗 日本 1970年 おおすみ 0134 (126)
中華人民共和国の旗 中国 1970年 東方紅1号 0140 (117)
オランダの旗 オランダ 1974年 ANS 0013 (12)
スペインの旗 スペイン 1974年 INTASAT 0009 (9)
インドの旗 インド 1975年 アリヤバータ 0054 (49)
インドネシアの旗 インドネシア 1976年 パラパA1 0012 (11)
[[ファイル:テンプレート:Country flag alias Czechoslovakia|border|25x20px|テンプレート:Country alias Czechoslovakiaの旗|link=]] [[テンプレート:Country alias Czechoslovakia|テンプレート:Country alias Czechoslovakia]] 1978年 マギオン1 0005
欧州宇宙機関 1979年 CAT-1English版 0000不明 (49)
ブルガリアの旗 ブルガリア 1981年 ブルガリア1300 0001 (1)
サウジアラビアの旗 サウジアラビア 1985年 アラブサット1AEnglish版 0012
ブラジルの旗 ブラジル 1985年 ブラジルサットA1 0013 (12)
メキシコの旗 メキシコ 1985年 モレロス1English版 0007 (8)
スウェーデンの旗 スウェーデン 1986年 バイキング 0011 (13)
イスラエルの旗 イスラエル 1988年 オフェク1 0011 (10)
ルクセンブルクの旗 ルクセンブルク 1988年 アストラ1AEnglish版 0005 (19)
アルゼンチンの旗 アルゼンチン 1990年 ルーサット 0009 (9)
香港の旗 香港 1990年 AsiaSat 1English版 0009
パキスタンの旗 パキスタン 1990年 バダ-1English版 0003 (3)
大韓民国の旗 韓国 1992年 ウリビョル1号 0011 (10)
ポルトガルの旗 ポルトガル 1993年 ポーサット-1English版 0001 (1)
タイ王国の旗 タイ王国 1993年 タイコム1号 0007 (7)
トルコの旗 トルコ 1994年 トルクサット1BEnglish版 0008 (7)
ウクライナの旗 ウクライナ 1995年 シーチ-1 0006
マレーシアの旗 マレーシア 1996年 ミーサット1号English版 0006
ノルウェーの旗 ノルウェー 1997年 トール2号 0003
フィリピンの旗 フィリピン 1997年 アギラ2号English版
(マブハイ1号)
0002
エジプトの旗 エジプト 1998年 ナイルサット101号English版 0004
チリの旗 チリ 1998年 ファーサット・アルファEnglish版 0002 (1)
シンガポールの旗 シンガポール 1998年 ST-1 0003
台湾の旗 台湾 1999年 FORMOSAT-1 0008 (8)
デンマークの旗 デンマーク 1999年 エルステッドEnglish版 0004
南アフリカ共和国の旗 南アフリカ 1999年 SUNSAT 0002
アラブ首長国連邦の旗 アラブ首長国連邦 2000年 スラーヤ1号 0006 (5)
モロッコの旗 モロッコ 2001年 マロック・トゥブサット1English版 0001
アルジェリアの旗 アルジェリア 2002年 アルサット1English版 0002
ギリシャの旗 ギリシャ 2003年 ヘラスサット2English版 0002
ナイジェリアの旗 ナイジェリア 2003年 NigeriaSat-1 0004
イランの旗 イラン 2005年 スィーナー1号 0001
カザフスタンの旗 カザフスタン 2006年 KazSat-1 0002
コロンビアの旗 コロンビア 2007年 リベルタード1 0001
ベトナムの旗 ベトナム 2008年 Vinasat-1 0001
ベネズエラの旗 ベネズエラ 2008年 ヴェネサット-1 0001
スイスの旗 スイス 2009年 スイスキューブ [26] 0002
ポーランドの旗 ポーランド[27] 2012年 PW-SatEnglish版 0002 (1)
ハンガリーの旗 ハンガリー 2012年 MaSat-1 [28] 0005
ルーマニアの旗 ルーマニア 2012年 ゴリアテ [29] 0001
ベラルーシの旗 ベラルーシ 2012年 BKA (BelKA-2) 0000n/a
朝鮮民主主義人民共和国の旗 朝鮮民主主義人民共和国 2012年 光明星3号2号機 [30] 0001
アゼルバイジャンの旗 アゼルバイジャン 2013年 アゼルスペースEnglish版
ペルーの旗 ペルー 2014年 チャスキー1号English版

カナダは人工衛星を製作した3番目の国であるが[31]、打ち上げはアメリカの射場でアメリカのロケットにより行われた。オーストラリアは、アメリカから寄贈されたレッドストーンとアメリカのサポートチームによりWRESATを打ち上げた[32]。イタリアはNASAの訓練を受けたイタリア人チームとともにアメリカのワロップス島からスカウトロケットを使用して打ち上げた[33]

計画中

衛星への攻撃

21世紀初頭では、衛星は軍事組織によってプロパガンダ目的や軍事ネットワークから機密情報を盗むため、ハッキングを受けている[38][39]

低軌道上の人工衛星は地球からの弾道ミサイルによって破壊可能である。ロシア、アメリカ、中国は衛星破壊の実験を行ったことがある[40]。2007年、中国は自国の気象衛星風雲一号Cを破壊し[40]、2008年2月、アメリカ海軍は自国の偵察衛星USA-193を破壊させている[41]

脚注

注釈

  1. 高度が高くなれば重力の影響が小さくなるので、より低速(小さい遠心力)で周回できる。例えば高度約36,000 kmの静止軌道では約 3.1 km/sで人工衛星(静止衛星)となる。

出典

  1. 第12回『秒速7.9Km』 北大リサーチ&ビジネスパーク
  2. Rockets in Science Fiction (Late 19th Century)”. マーシャル宇宙飛行センター. . 2008閲覧.
  3. Everett Franklin Bleiler; Richard Bleiler (1991). Science-fiction, the Early Years. ケント州立大学出版, 325. ISBN 978-0873384162. 
  4. Richard Rhodes (2000). Visions of Technology. Simon & Schuster, 160. ISBN 978-0684863115. 
  5. Preliminary Design of an Experimental World-Circling Spaceship”. ランド研究所. . 2008閲覧.
  6. Alfred Rosenthal (1968). Venture Into Space: Early Years of Goddard Space Flight Center. NASA, 15. 
  7. “Kerim Kerimov”, Encyclopædia Britannica, http://www.britannica.com/EBchecked/topic/914879/Kerim-Kerimov . 2008閲覧. 
  8. David S. F. Portree; Joseph P. Loftus, Jr (1999年). “Orbital Debris: A Chronology”. ジョンソン宇宙センター. pp. 18. 2000年9月1日時点のオリジナルよりアーカイブ。. 2008閲覧.
  9. Orbital Debris Education Package”. ジョンソン宇宙センター. 2008年4月8日時点のオリジナルよりアーカイブ。. 2008閲覧.
  10. Grant, A.; Meadows, J. (2004). Communication Technology Update, ninth edition, Focal Press, 284. ISBN 0240806409. 
  11. Workshop on the Use of Microsatellite Technologies”. United Nations. pp. 6 (2008年). . 2008閲覧.
  12. 小型宇宙衛星技術競争 ―NANO・PICOは国際標準技術化―(大型副次利用から最適小型利用へ)”. . 2010閲覧.
  13. JAXA、“掃除衛星”の研究開発に着手-10年後小型機実用化”. 日刊工業新聞. . 2010閲覧.
  14. 三菱電機 DSPACE/2009年4月コラムVol.2[自己増殖を続ける「宇宙ゴミ」を掃除せよ!:林公代]
  15. 導電性テザー(EDT):研究開発部門 - JAXA
  16. 環境事業 - 日東製網株式会社
  17. James Oberg (1984年7月). “Pearl Harbor In Space”. Omni Magazine. pp. 42–44. . 2008閲覧.
  18. 鈴木弘一 『はじめての宇宙工学』 森北出版株式会社、2007年。ISBN 978-4-627-69071-4。
  19. 19.0 19.1 19.2 19.3 岩崎信夫 『図説 宇宙工学概論』 丸善プラネット株式会社、1999年。ISBN 4-944024-64-9。
  20. Vanguard Approaches Half A Century In Space”. SpaceRef.com. . 2010閲覧.
  21. Conventional Disposal Method: Rockets and Graveyard Orbits”. . 2010閲覧.
  22. 陸から最も離れた海、宇宙施設の墓場「ポイント・ネモ」”. AFP (2018年4月2日). . 2018閲覧.
  23. 23.0 23.1 Tariq Malik. “SpaceX Successfully Launches Falcon 1 Rocket Into Orbit”. Space.com. . 2008閲覧.
  24. First time in History”. The Satellite Encyclopedia. . 2008閲覧.
  25. 2013年1月17日(2011年12月2日)時点。SATCAT Boxscore”. celestrak.com. . 2011閲覧.
  26. India launches Switzerland's first satellite
  27. In a difference of first full Bulgarian Intercosmos Bulgaria 1300 satellite, Poland's near first satellite, Intercosmos Copernicus 500(インターコスモス・
    コペルニクス500
    ) in 1973, were constructed and owned in cooperation with Soviet Union under the same Interkosmos program.
  28. Hungary launches its first satellite into orbit.
  29. First Romanian satellite Goliat successfully launched
  30. アーカイブされたコピー”. 2012年12月14日時点のオリジナルよりアーカイブ。. 2012年12月12日閲覧.
  31. Daphne Burleson (2005). Space Programs Outside the United States. McFarland & Company, 43. ISBN 978-0786418527. 
  32. Mike Gruntman (2004). Blazing the Trail. American Institute of Aeronautics and Astronautics, 426. ISBN 978-1563477058. 
  33. Brian Harvey (2003). Europe's Space Programme. Springer Science+Business Media, 114. ISBN 978-1852337223. 
  34. http://bddnews.com/post/20140916_806/
  35. http://bangla-joho.com/culture/2015/12/17/703/
  36. Vremenik”. . 2010閲覧.
  37. https://sorae.info/030201/4906.html
  38. Dan Morrill. “Hack a Satellite while it is in orbit”. ITtoolbox. . 2008閲覧.
  39. AsiaSat accuses Falungong of hacking satellite signals”. Press Trust of India. . 2008閲覧.
  40. 40.0 40.1 William J. Broad; David E. Sanger (2007年). “China Tests Anti-Satellite Weapon, Unnerving U.S.”. ニューヨーク・タイムス. . 2008閲覧.
  41. Navy Missile Successful as Spy Satellite Is Shot Down”. Popular Mechanics (2008年). . 2008閲覧.

関連項目

外部リンク

ast:Satélite (dixebra)