「ヤコビの二平方定理」の版間の差分

提供: miniwiki
移動先:案内検索
(1版 をインポートしました)
(内容を「{{テンプレート:20180815sk}}」で置換)
(タグ: Replaced)
 
1行目: 1行目:
'''ヤコビの二平方定理'''(Jacobi's two square theorem)は、自然数を高々二個の[[平方数]]の和で表す方法の数を与える[[定理]]<ref>Hardy & Write, 1938, An Introduction to the Theory of Numbers</ref>。名称はドイツの数学者[[カール・グスタフ・ヤコブ・ヤコビ|ヤコビ]]に由来する。
+
{{テンプレート:20180815sk}}
 
 
自然数Nを高々二個の平方数の和で表す方法の数は
 
:<math>r_2(n)=4\sum_{2{\nmid}d{\mid}n}(-1)^\frac{d-1}{2}</math>
 
で与えられる。但し、シグマ記号は2で整除されないNの[[約数]](1とNを含む)について和を取ることを表す。言い替えれば、自然数Nを高々二個の平方数の和で表す方法の数は、Nの約数のうち、4を法にして1と合同になるものの個数から3と合同になるものの個数を引いたものの4倍に等しい。
 
 
 
== 具体例 ==
 
例えば、
 
:<math>r_2(25)=4\left((-1)^\frac{1-1}{2}+(-1)^\frac{5-1}{2}+(-1)^\frac{25-1}{2}\right)=12</math>
 
であるが、実際に25を高々二個の平方数の和で表す方法は
 
:<math>\begin{align}25
 
&=(\pm5)^2+0^2\\
 
&=0^2+(\pm5)^2\\
 
&=(\pm4)^2+(\pm3)^2\\
 
&=(\pm3)^2+(\pm4)^2\\
 
\end{align}</math>
 
であり、符号と順序を区別すれば12個になる。
 
 
 
== 証明 ==
 
[[テータ関数]]の比は[[楕円関数]](二重周期を持つ有理型関数)になり、楕円関数の導関数も楕円関数になるから、
 
:<math>\begin{align}
 
F(v)&=\frac{\partial}{\partial{v}}\left(\frac{\vartheta_1(v,\tau)}{\vartheta_2(v,\tau)}\right)=\frac{\vartheta_1'(v,\tau)\vartheta_2(v,\tau)-\vartheta_1(v,\tau)\vartheta_2'(v,\tau)}{\vartheta_2(v,\tau)^2}\\
 
G(v)&=\left(\frac{\vartheta_3(v,\tau)}{\vartheta_2(v,\tau)}\right)\left(\frac{\vartheta_4(v,\tau)}{\vartheta_2(v,\tau)}\right)=\frac{\vartheta_3(v,\tau)\vartheta_4(v,\tau)}{\vartheta_2(v,\tau)^2}\\
 
\end{align}</math>
 
<math>F(v)</math>と<math>G(v)</math>は共に楕円関数である。且つ、
 
:<math>\begin{align}
 
&\vartheta_1'\left(v+\frac{1}{2}+\frac{\tau}{2}\right)=\vartheta_2'\left(v+\frac{1}{2}+\frac{\tau}{2}\right)=0\\
 
&\vartheta_1'\left(v+\frac{\tau}{2}\right)=\vartheta_2'\left(v+\frac{\tau}{2}\right)=0\\
 
\end{align}</math>
 
であるから、<math>G(v)=0</math>となるところにおいて悉く<math>F(v)=0</math>となり、[[リウヴィルの定理 (解析学)|リウヴィルの定理]]によって<math>F(v)/G(v)</math>は定数である。<math>v\to0</math>として
 
:<math>\begin{align}
 
&\vartheta_1(0,\tau)=0\\
 
&\vartheta_1'(0,\tau)=\pi\vartheta_2(0,\tau)\vartheta_3(0,\tau)\vartheta_4(0,\tau)\\
 
\end{align}</math>
 
により、<math>F(0)=\pi\vartheta_2(0,\tau)^2G(0)</math>を得る。従って、
 
:<math>F\left(v\right)=\frac{\pi\vartheta_2(0,\tau)^2\vartheta_3(v,\tau)\vartheta_4(v,\tau)}{\vartheta_2(v,\tau)^2}</math>
 
である。右辺のテータ関数を無限乗積に展開し、<math>v=\tfrac{1}{4}</math>を代入し、<math>q=e^{{\pi}i\tau}</math>と書くと
 
:<math>\begin{align}F\left(\tfrac{1}{4}\right)
 
&=\frac{\pi\left(2q^{1/4}\right)^2}{\left(2q^{1/4}\right)^2\cos^2\tfrac{\pi}{4}}\prod_{m=1}^{\infty}\frac{(1-q^{2m})^2(1+q^{2m})^4(1-q^{2m})(1+iq^{2m-1})(1-iq^{2m-1})(1-q^{2m})(1-iq^{2m-1})(1+iq^{2m-1})}{(1-q^{2m})^2(1+iq^{2m})^2(1-iq^{2m})^2}\\
 
&=2\pi\prod_{m=1}^{\infty}\frac{(1-q^{2m})^2(1+q^{2m})^4(1+iq^{2m-1})^2(1-iq^{2m-1})^2}{(1+iq^{2m})^2(1-iq^{2m})^2}\\
 
&=2\pi\prod_{m=1}^{\infty}\frac{(1-q^{4m})^2(1+q^{2m})^2(1+q^{4m-2})^2}{(1+q^{4m})^2}\\
 
&=2\pi\prod_{m=1}^{\infty}\frac{(1-q^{4m})^2(1+q^{4m})^2(1+q^{4m-2})^2(1+q^{4m-2})^2}{(1+q^{4m})^2}\\
 
&=2\pi\prod_{m=1}^{\infty}(1-q^{4m})^2(1+q^{4m-2})^4\\
 
\end{align}</math>
 
となり、[[ヤコビの三重積]]の公式により
 
:<math>\begin{align}F\left(\tfrac{1}{4}\right)
 
&=2\pi\left(\sum_{n=-\infty}^{\infty}q^{2n^2}\right)^2=\sum_{m=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}q^{2(n^2+m^2)}
 
\end{align}</math>
 
となる。一方、
 
:<math>\begin{align}
 
&\vartheta_2\left(v\right)=\vartheta_1\left(\tfrac{1}{2}-v\right)\\
 
&\vartheta_2'\left(v\right)=\vartheta_1'\left(\tfrac{1}{2}-v\right)\\
 
\end{align}</math>
 
であるから
 
:<math>\begin{align}F\left(\tfrac{1}{4}\right)
 
&=\frac{\vartheta_1'\left(\tfrac{1}{4}\right)\vartheta_2\left(\tfrac{1}{4}\right)-\vartheta_1\left(\tfrac{1}{4}\right)\vartheta_2'\left(\tfrac{1}{4}\right)}{\vartheta_2\left(\tfrac{1}{4}\right)^2}=\frac{2\vartheta_1'\left(\tfrac{1}{4}\right)}{\vartheta_1\left(\tfrac{1}{4}\right)}\\
 
\end{align}</math>
 
であり、テータ関数の対数微分の公式により
 
:<math>\begin{align}F\left(\tfrac{1}{4}\right)
 
&=2\pi\cot\frac{\pi}{4}+8\pi\sum_{n=1}^{\infty}\frac{q^{2n}}{1-q^{2n}}\sin\frac{\pi{n}}{2}\\
 
&=2\pi+8\pi\sum_{k=0}^{\infty}\frac{q^{2(2k+1)}}{1-q^{2(2k+1)}}(-1)^k\qquad(n\to2k+1)\\
 
&=2\pi+8\pi\sum_{k=0}^{\infty}(-1)^k\sum_{j=1}^{\infty}q^{2j(2k+1)}\\
 
\end{align}</math>
 
である。以上により、
 
:<math>\frac{F\left(\tfrac{1}{4}\right)}{2\pi}=\sum_{m=-\infty}^{\infty}\sum_{n=-\infty}^{\infty}q^{2(n^2+m^2)}=1+4\sum_{k=0}^{\infty}(-1)^k\sum_{j=1}^{\infty}q^{2j(2k+1)}</math>
 
が得られ、<math>q^{2N}</math>の係数を比較することにより、
 
:<math>r_2(N)=4\sum_{2{\nmid}d{\mid}N}(-1)^\frac{d-1}{2}</math>
 
が得られる。
 
 
 
== 関連記事 ==
 
*[[二個の平方数の和]]
 
*[[ヤコビの四平方定理]]
 
 
 
== 出典 ==
 
<references/>
 
 
 
{{DEFAULTSORT:やこひのにへいほうていり}}
 
[[Category:数論の定理]]
 
[[Category:数学に関する記事]]
 
[[Category:エポニム]]
 

2018/11/1/ (木) 07:41時点における最新版



楽天市場検索: