「海王星の環」の版間の差分
ja>Sutepen angel momo 細 |
細 (1版 をインポートしました) |
(相違点なし)
|
2018/12/28/ (金) 18:17時点における最新版
海王星の環(かいおうせいのわ)は、5つの主要な環から構成されている[1]。この環の存在は、1984年にアンドレ・ブライックにより予測され、1989年にボイジャー2号の観測により確認された。最も密度の濃い部分でも、土星の環の密度の薄い部分であるC環やカッシーニの間隙程度であり、海王星の環のほとんどは、薄く宇宙塵に富み、むしろ木星の環に似ている。海王星の環は、海王星の研究に功績のあった天文学者(ヨハン・ゴットフリート・ガレ、ユルバン・ルヴェリエ、ウィリアム・ラッセル、フランソワ・アラゴ及びジョン・クーチ・アダムズ[2][3])の名前に因んで名づけられている[1]。また、衛星ガラテアと同期する軌道に、名前のついていない暗い環を持つ。他の3つの衛星であるナイアド、タラッサ、デスピナは、環の間を公転する[3]。
海王星の環は、放射線によって生成した有機化合物のような非常に暗い物質で構成されており、天王星の環の組成と似ている[4]。環の中の塵の割合は、20%から70%と高いが[4]、光学的深さは、0.1未満と低い[5]。アダムズ環には、リベルテ・アーク、エガリテ・アーク1、エガリテ・アーク2、フラテルニテ・アーク、クラージュ・アークと名付けられた5つのアーク(明るい部分)を含む。アークは、軌道黄経の範囲が狭く、非常に安定しており、1980年の最初の発見時からほとんど変化していない[4]。アークがどのように安定化しているかは、まだ未解明である。しかし、その安定性は、アダムズ環とその内側の羊飼い衛星ガラテアとの間の共鳴に関係している可能性がある[6]。
発見と観測
海王星の環についての最初の言及は、1846年、海王星最大の衛星トリトンの発見者であるウィリアム・ラッセルに遡る[1]。しかし、彼の主張は確認されず、アーティファクトであると考えられた。最初の信頼性のある環の観測は、1968年、星の掩蔽の観測によって行われたが、その結果は、1977年に天王星の環が発見されるまで公表されなかった[1]。天王星の環が発見された直後、Harold J. Reitsemaが率いるヴィラノヴァ大学のチームは、海王星の環の探索を開始した。1981年5月24日、彼らは掩蔽の際の明るさの一時的な下落を検出したが、環の発見を示すものではなかった。後に、ボイジャーがフライバイしたことで、この掩蔽は、小衛星ラリッサが原因であることが明らかとなった[1]。
1980年代、海王星の大規模な掩蔽の回数は、当時天の川近くにあり、恒星の密度の高い領域を動いていた天王星のものよりもずっと少なかった。海王星の次の掩蔽は1983年9月12日であり、この時は海王星の環の可能性があるものが検出された[1]。しかし、地上からの観測では結論が得られなかった。次の6年間で、約50回の掩蔽が観測されそのうちほぼ3分の1で有意な結果が得られた[7]。何か(恐らく不完全なアーク)が確かに海王星の周りに存在するが、環の特徴は謎のままだった[1]。ボイジャー2号は、1989年に海王星をフライバイした際、海王星の環が存在する決定的な証拠を掴んだ。これにより、以前に不定期に観測されていた掩蔽は、実はアダムズ環のアークが原因だったことが明らかとなった[8]。ボイジャーのフライバイ後、それまでの掩蔽の観測結果が再分析され、環のアークの特徴が判明したが、それはボイジャーが観測したものとほぼ完全に一致した[4]。
ボイジャーのフライバイ以降、解像度と集光力が上がったことにより、ハッブル宇宙望遠鏡や地上の望遠鏡で最も明るい環(アダムズ環とルヴェリエ環)の撮影がなされた[9]。それらは可視光で見ることができ、海王星からのメタン吸収波長の電磁波を大きく遮断した。ただし薄いリングは、見ることはできなかった[10]。
一般的な性質
海王星は5つの環を持ち[4]、惑星からの距離が近い順に、ガレ環、ルヴェリエ環、ラッセル環、アラゴ環、アダムズ環と呼ばれる[3]。これらの明瞭な環に加え、ガレ環とルヴェリエ環の間に、非常に薄い物質のシートがあり、恐らくさらに内側にもある[4][6]。環のうち3つは細く、幅は約100kmかそれ以下であるのに対して[5]、ガレ環とラッセル環は広く、その幅は2,000kmから5,000km程度である[4]。アダムズ環は、5つの明るいアークを含む[4]。そのアークは、反時計回りにフラテルニテ・アーク、エガリテ・アーク1、エガリテ・アーク2、リベルテ・アーク、クラージュ・アークという[6][11]。最初の3つの名前は、フランス革命とフランス共和国の標語である「自由・平等・博愛」 "liberty, equality, fraternity"に由来する。この名前は、1984年から1985年にこれを発見したそれぞれの発見者によって提案された[7]。4つの小さな衛星が環の内側を公転し、ナイアドとタラッサは、ガレ環とルヴェリエ環の間を回り、デスピナはルヴェリエ環のすぐ内側、ガラテアはアダムズ環のすぐ内側[3]、名前のない薄い暗い環の上を回る[6]。
海王星の環は、多量のμmサイズの塵を含み、その割合は20%から70%に達する[6]。この面で、海王星の環は、塵の割合が50%から100%になる木星の環と似ており、塵の含量が0.1%以下と少ない土星の環や天王星の環とは異なる[3][6]。海王星の環を構成する粒子は暗い物質からなり、それは恐らく放射線によって生成した有機物からなる氷の混合物である[3][4]。環の色は赤みがかっており、ボンドアルベドの値(0.01-0.02)は天王星の環や海王星の内惑星の値に近い[4]。通常は透明であり、光学的深さは0.1を超えない。全体として、海王星の環は、木星の環と似ている[6]。
海王星の環は、天王星の環と同様に、比較的若く、その年齢は太陽系の年齢よりかなり小さいと考えられている[4]。また、同じく天王星の環と同様に、海王星の環は、かつての内惑星の衝突による破片でできていると考えられている[6]。この衝突によって小衛星帯ができ、環の塵の供給源になったと考えられる。これは、ボイジャー2号が天王星のメインの環の間に観測した薄い塵の帯と似ている[4]。
内側の環
海王星の最も内側の環は、1846年に最初に海王星を望遠鏡で観測したヨハン・ゴットフリート・ガレに因んで、ガレ環と呼ばれる[12]。幅は約2,000kmで、惑星から41,000kmから43,000kmの距離にある[3]。平均の光学的深さが10-4程度の薄い環で、0.15kmの厚さに相当する[4]。塵の割合は、40%から70%である[4][13]。
内側から2番目の環は、1846年に海王星の位置を予測したユルバン・ルヴェリエに因んでルヴェリエ環と呼ばれる[14]。軌道半径は約53,200kmで[3]、幅は約113kmである[5]。光学的深さは0.0062 ± 0.0015で、0.7 ± 0.2 kmの厚さに相当する[5]。塵の割合は、40%から70%である[6][13]。軌道半径52,526kmでこの環のわずかに内側にある小衛星デスピナは、羊飼い衛星としてこの間の形成に関わったと考えられている[3]。
内側から3番目の環は最も幅が広く[6]、1846年に海王星最大の衛星トリトンを発見したウィリアム・ラッセルに因んでラッセル環と呼ばれる[15]。この環は、軌道半径約53,200kmのルヴェリエ環と約57,200kmのアラゴ環の間を埋める薄い物質のシートである[3]。平均の光学的深さは10-4程度で、0.4kmの厚さに相当する[4]。塵の割合は、20%から40%である[13]。
ラッセル環の外縁、惑星から約57,200kmの距離には、幅100㎞程の小さな明るさのピークがあり[3]、フランスの数学者、物理学者、天文学者で政治家のフランソワ・アラゴに因んでアラゴ環と呼ぶ者もいる[16]。しかし、多くの出版物では、アラゴ環には言及されていない[6]。
アダムズ環
最も外側のアダムズ環は、軌道半径が約63,930kmであり[3]、海王星の環の中で最もよく研究されている[3]。ルヴェリエとは独立に海王星の位置を予測したジョン・クーチ・アダムズに因んで名づけられた[17]。この環は幅が狭く、若干扁平で傾いており、合計の幅は約35 km (15-50 km)[5]、光学的深さはアーク以外では0.011 ± 0.003であり、0.4kmの厚さに相当する[5]。塵の割合は、20%から40%であり、他の狭い環と比べて少ない[13]。軌道半径61,953 kmとアダムズ環のすぐ内側を公転する衛星ガラテアは、42:43で軌道共鳴し[11]、環の狭い範囲に構成粒子を留める役割を担っている。
アーク
アダムズ環の最も明るい部分であるアークは、最初に発見された海王星の環の部分である[1]。アークは、環の中の離散した領域であり、そこでは構成粒子は、謎のクラスターを作っている。アダムズ環は、5つの短いアークからなることが知られ、それらは黄経247°から294°の比較的狭い範囲を占める。1986年時点で、それぞれ以下の黄経の範囲にあった。
- 247°-257°(フラテルニテ・アーク)
- 261°-264°(エガリテ・アーク1)
- 265°-266°(エガリテ・アーク2)
- 276°-280°(リベルテ・アーク)
- 284.5°-285.5°(クラージュ・アーク)[3][11]
最も明るく最も長いアークはフラテルニテ・アークで、最も暗いのはクラージュ・アークである。アークの光学的深さは、0.03-0.09と推測されている[4](掩蔽によって測定されたリベルテ・アークの前縁の光学的深さは、0.034 ± 0.005であった[5])。幅は、アダムズ環全体の幅とほぼ同じで、約30kmである[4]。相当する厚さは、1.25kmから2.15kmの範囲で様々である(リベルテ・アークでの前縁では0.77 ± 0.13 kmであった)[5]。塵の割合は、40%から70%である[13]。アダムズ環のアークは、土星のG環と類似している[18]。
アークは非常に安定な構造である。1980年代に掩蔽を利用して地上から、1989年にボイジャー2号から、1997年から2005年にかけてハッブル宇宙望遠鏡や地上の望遠鏡から観測されたが、ほぼ同じ軌道黄経に留まっていた[4][10]。しかし、ある種の変化も見られている。アーク全体の明るさは、1986年以来徐々に暗くなっている[10]。2003年、リベルテ・アークがほぼ消えていた間に、クラージュ・アークは8°から294°に移っている(隣の安定共鳴状態に移った可能性がある)[19]。フラテルニテ・アークとエガリテ・アークは、その相対光度が不定期に変動している。このような観測される変化は、相互での塵の交換が原因である可能性がある[10]。ボイジャーのフライバイで発見された暗いアークであるクラージュ・アークは、1998年にフレアを発生したように急に明るくなったが、現在は元の暗さに戻っている。可視光による観測によればアークの総物質量はほぼ一定であるが、赤外線観測では、明るさは徐々に暗くなっている[19]。
閉じ込め
アダムズ環のアークについては、説明できない点が残っている[3]。軌道力学では、長い年月を経るとアークは環全体に拡散することとなるため、その存在自体が謎である。そこで、アークの閉じ込めについては、いくつかの説が提唱されている。最も知られた説は、ガラテアが42:43の軌道傾斜角共鳴で物質をアークに閉じ込めているというものである[11]。この共鳴により、環の軌道上にそれぞれ4°の長さの84個の安定な領域ができ、この隣接領域にアークができるというものである[11]。しかし、ハッブル宇宙望遠鏡とケック望遠鏡による1998年の環の平均の動きの観測で、海王星の環はガラテアとの軌道傾斜角共鳴上にないという結論が得られた[9][20]。
もう1つの説は、軌道離心率共鳴によりアークへの閉じ込めが起こるというものである[21]。このモデルでは、アダムズ環の有限質量を考慮に入れ、それにより共鳴点がより環に近くなる。この説の副産物として、アダムズ環の質量の推定が可能であり、ガラテアの質量の約0.2%と見積もられた[21]。1986年に提唱された3番目の説では、この環の内側にもう1つの衛星が公転しているとし、アークはこの衛星のラグランジュ点に捕えられたものであるとされる。しかし、ボイジャー2号の観測により、未発見の衛星の大きさと質量は厳しく制限され、この説はあり得ないと考えられる[4]。より複雑な説では、いくつかの小衛星がガラテアの共鳴軌道に捕えられ、アークの閉じ込めと塵の供給に寄与しているとされる[22]。
探索
海王星の環は、1989年8月のボイジャー2号の海王星フライバイの際に詳しく調査された[4]。画像の撮影の他に、紫外線、可視光による掩蔽の観測が行われた[5]。ボイジャー2号は、太陽に対して様々な配置で環を観測し、太陽の後方、前方、側方からの写真を撮影した[4]。この写真の分析により、環を構成する粒子のボンドアルベドの値の決定等が可能となった[4]。また同時に、アダムズ環の羊飼い衛星であるガラテアを含む海王星の6つの内衛星が新たに発見された[4]。
性質
環の名前 | 半径 (km)[3] | 幅 (km) | 厚さ (km) | 光学深さ | 塵の割合,%[13] | 軌道離心率 | 軌道傾斜角(°) | 備考 |
---|---|---|---|---|---|---|---|---|
ガレ (N42) | 40,900-42,900 | 2,000 | 0.15[4] | ~ 10-4[4] | 40-70 | ? | ? | 幅広く暗い環 |
ルヴェリエ (N53) | 53,200 ± 20 | 113[5] | 0.7 ± 0.2[5] | 6.2 ± 1.5テンプレート:Esp[5] | 40-70 | ? | ? | 狭い環 |
ラッセル | 53,200?57,200 | 4,000 | 0.4[4] | ~ 10-4[4] | 20-40 | ? | ? | ルヴェリエ環とアラゴ環の間の暗い物質のシートである |
アラゴ | 57,200 | <100[4] | ? | ? | ? | ? | ? | |
アダムズ (N63) | 62,932 ± 2 | 15-50[5] | 0.4[4] 1.25-2.15[5] (アーク) |
0.011 ± 0.003[5] 0.03-0.09[4] (アーク) |
20-40 40-70 (アーク) |
4.7 ± 0.2テンプレート:Esp[11] | 0.0617 ± 0.0043[11] | 5つの明るいアークを含む |
*?は、そのパラメータが不明であることを意味する。
出典
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Miner, Ellis D., Wessen, Randii R., Cuzzi, Jeffrey N. (2007). “The discovery of the Neptune ring system”, Planetary Ring Systems. Springer Praxis Books. ISBN 978-0-387-34177-4.
- ↑ Listed in increasing distance from the planet
- ↑ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 Miner, Ellis D., Wessen, Randii R., Cuzzi, Jeffrey N. (2007). “Present knowledge of the Neptune ring system”, Planetary Ring System. Springer Praxis Books. ISBN 978-0-387-34177-4.
- ↑ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 Smith, B. A.; Soderblom, L. A.; Banfield, D.; Barnet, c.; Basilevsky, A. T.; Beebe, R. F.; Bollinger, K.; Boyce, J. M. et al. (1989). “Voyager 2 at Neptune: Imaging Science Results”. Science 246 (4936): 1422–1449. doi:10.1126/science.246.4936.1422. ISSN 0036-8075.
- ↑ 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 Horn, Linda J.; Hui, John; Lane, Arthur L. (1990). “Observations of Neptunian rings by Voyager photopolarimeter experiment”. Geophysics Research Letters 17 (10): 1745–1748. Bibcode 1990GeoRL..17.1745H. doi:10.1029/GL017i010p01745.
- ↑ 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 Burns, J.A.; Hamilton, D.P.; Showalter, M.R. (2001). “Dusty Rings and Circumplanetary Dust: Observations and Simple Physics” (pdf). Interplanetary Dust. Berlin: Springer. pp. 641–725 .
- ↑ 7.0 7.1 Sicardy, B.; Roques, F.; Brahic, A. (1991). “Neptune's Rings, 1983–1989 Ground-Based Stellar Occultation Observations”. Icarus 89 (2): 220. Bibcode 1991Icar...89..220S. doi:10.1016/0019-1035(91)90175-S.
- ↑ Nicholson, P.D.; Cooke, Maren L. et al. (1990). “Five Stellar Occultations by Neptune: Further Observations of Ring Arcs”. Icarus 87 (1): 1. Bibcode 1990Icar...87....1N. doi:10.1016/0019-1035(90)90020-A.
- ↑ 9.0 9.1 Dumas, Cristophe; Terrile, Richard J. et al. (1999). “Stability of Neptune's ring arcs in question” (pdf). Nature 400 (6746): 733–735. Bibcode 1999Natur.400..733D. doi:10.1038/23414 .
- ↑ 10.0 10.1 10.2 10.3 dePater, Imke; Gibbard, Seren et al. (2005). “The Dynamic Neptunian Ring Arcs: Evidence for a Gradual Disappearance of Liberté and Resonant Jump of Courage” (pdf). Icarus 174 (1): 263–272. Bibcode 2005Icar..174..263D. doi:10.1016/j.icarus.2004.10.020 .
- ↑ 11.0 11.1 11.2 11.3 11.4 11.5 11.6 Porco, C.C. (1991). “An Explanation for Neptune's Ring Arcs”. Science 253 (5023): 995–1001. Bibcode 1991Sci...253..995P. doi:10.1126/science.253.5023.995. PMID 17775342.
- ↑ Editorial (1910). “Obituaries: G. V. Schiaparelli, J. G. Galle, J. B. N. Hennessey J. Coles, J. E. Gore”. The Observatory 33: 311–318. Bibcode 1910Obs....33..311. .
- ↑ 13.0 13.1 13.2 13.3 13.4 13.5 Colwell, Joshua E.; Esposito, Larry W. (1990). “A model of dust production in the Neptunian ring system”. Geophysics Research Letters 17 (10): 1741–1744. Bibcode 1990GeoRL..17.1741C. doi:10.1029/GL017i010p01741.
- ↑ Adams, John (1877). “Prof. Adams on Leverrier's Planetary Theories”. Nature 16 (413): 462–464. Bibcode 1877Natur..16..462.. doi:10.1038/016462a0 .
- ↑ <Please add first missing authors to populate metadata.> (1881). “Fellows deceased, list of Lassell, W”. Monthly Notices of the Royal Astronomical Society 41: 188–191. Bibcode 1881MNRAS..41..188..
- ↑ Hansen, P. A. (1854). “Extract of a Letter respecting the Lunar Tables (Obituary of M. Arago)”. Monthly Notices of the Royal Astronomical Society 14: 102–107. Bibcode 1853MNRAS..14....1H.
- ↑ <Please add first missing authors to populate metadata.> (1893). “OBITUARY: List of Fellows and Associates deceased during the year: John Couch Adams”. Monthly Notices of the Royal Astronomical Society 53: 184–209. Bibcode 1893MNRAS..53..184..
- ↑ Hedman, M. M., Burns, J. A., Tiscareno et al. (2007). “The Source of Saturn's G Ring” (pdf). Science 317 (5838): 653–656. Bibcode 2007Sci...317..653H. doi:10.1126/science.1143964. PMID 17673659 .
- ↑ 19.0 19.1 Showalter, M.R.; Burns; De Pater; Hamilton; Lissauer; Verbanac; et al. (2005). “Updates on the dusty rings of Jupiter, Uranus and Neptune”. Dust in Planetary Systems, Proceedings of the conference held September 26–28, 2005 in Kaua'i, Hawaii 1280: 130. Bibcode 2005LPICo1280..130S.
- ↑ Sicardy, B.; Roddier, F. et al. (1999). “Images of Neptune's ring arcs obtained by a ground-based telescope”. Nature 400 (6746): 731–733. Bibcode 1999Natur.400..731S. doi:10.1038/23410.
- ↑ 21.0 21.1 Namouni, Fathi; Porco, Carolyn (2002). “The confinement of Neptune's ring arcs by the moon Galatea”. Nature 417 (6884): 45–47. doi:10.1038/417045a. PMID 11986660.
- ↑ Salo, Heikki; Hanninen, Jyrki (1998). “Neptune's Partial Rings: Action of Galatea on Self-Gravitating Arc Particles”. Science 282 (5391): 1102–1104. Bibcode 1998Sci...282.1102S. doi:10.1126/science.282.5391.1102. PMID 9804544.
関連項目
外部リンク
- Neptune's Rings by NASA's Solar System Exploration
- Gazetteer of Planetary Nomenclature – Ring and Ring Gap Nomenclature (Neptune), USGS