Warning: Undefined variable $type in /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php on line 3

Warning: "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /home/users/1/sub.jp-asate/web/wiki/includes/json/FormatJson.php on line 297

Warning: Trying to access array offset on value of type bool in /home/users/1/sub.jp-asate/web/wiki/includes/Setup.php on line 660

Warning: session_name(): Session name cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/Setup.php on line 834

Warning: ini_set(): Session ini settings cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 126

Warning: ini_set(): Session ini settings cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 127

Warning: session_cache_limiter(): Session cache limiter cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 133

Warning: session_set_save_handler(): Session save handler cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 140

Warning: "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /home/users/1/sub.jp-asate/web/wiki/languages/LanguageConverter.php on line 773

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/Feed.php on line 294

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/Feed.php on line 300

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46
https:///mymemo.xyz/wiki/api.php?action=feedcontributions&user=1.115.10.45&feedformat=atom miniwiki - 利用者の投稿記録 [ja] 2024-05-04T05:45:46Z 利用者の投稿記録 MediaWiki 1.31.0 関手 2017-06-15T21:32:51Z <p>1.115.10.45: </p> <hr /> <div>{{出典の明記|date=2015年10月}}<br /> [[圏論]]における&#039;&#039;&#039;関手&#039;&#039;&#039;(かんしゅ、{{lang-en-short|functor}})は、[[圏 (数学)|圏]]から圏への構造と両立する対応付けである。関手によって一つの[[数学]]体系から別の体系への組織的な対応が定式化される。関手は「[[圏の圏]]」における[[射 (圏論)|射]]と考えることもできる。<br /> <br /> 関手の概念の萌芽は[[エヴァリスト・ガロア]]による[[群 (数学)|群]]を用いた[[代数方程式]]の研究に見ることができる。20世紀はじめの[[エミー・ネーター]]らによる[[環上の加群|加群]]の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの[[代数的位相幾何学]]において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは([[基本群]]のような)代数的対象が[[位相空間]]から導かれ、位相空間の間の[[連続写像]]は基本群の間の代数的[[準同型]]を導いている。その後[[アレクサンドル・グロタンディーク]]らによる[[代数幾何学]]の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。<br /> <br /> ==定義==<br /> === 共変関手 ===<br /> [[圏 (圏論)|圏]] {{mathcal|C}} から圏 {{mathcal|D}} への関手、特に&#039;&#039;&#039;共変関手&#039;&#039;&#039;(きょうへんかんしゅ、{{lang|en|covariant functor}}){{mvar|F}} は、<br /> * {{mathcal|C}} の各[[対象 (圏論)|対象]] {{mvar|X}} を {{mathcal|D}} の各対象 {{math|&#039;&#039;F&#039;&#039;(&#039;&#039;X&#039;&#039;)}} に対応させる<br /> * {{mathcal|C}} における[[射 (圏論)|射]] {{math|&#039;&#039;f&#039;&#039;: &#039;&#039;X&#039;&#039; → &#039;&#039;Y&#039;&#039;}} を {{mathcal|D}} における射 {{math|&#039;&#039;F&#039;&#039;(&#039;&#039;f&#039;&#039;): &#039;&#039;F&#039;&#039;(&#039;&#039;X&#039;&#039;) → &#039;&#039;F&#039;&#039;(&#039;&#039;Y&#039;&#039;)}} に対応させ、以下の性質を満たす<br /> ** 各対象 {{math|&#039;&#039;X&#039;&#039; &amp;isin; {{mathcal|C}}}} に対して {{math|1=&#039;&#039;F&#039;&#039;(id&lt;sub&gt;&#039;&#039;X&#039;&#039;&lt;/sub&gt;) = id&lt;sub&gt;&#039;&#039;F&#039;&#039;(&#039;&#039;X&#039;&#039;) &lt;/sub&gt;}},<br /> ** 任意の射 {{math|&#039;&#039;f&#039;&#039;: &#039;&#039;X&#039;&#039; → &#039;&#039;Y&#039;&#039;}} および {{math|&#039;&#039;g&#039;&#039;: &#039;&#039;Y&#039;&#039; → &#039;&#039;Z&#039;&#039;}} に対して {{math|1=&#039;&#039;F&#039;&#039;(&#039;&#039;g&#039;&#039; ∘ &#039;&#039;f&#039;&#039;) = &#039;&#039;F&#039;&#039;(&#039;&#039;g&#039;&#039;) ∘ &#039;&#039;F&#039;&#039;(&#039;&#039;f&#039;&#039;)}}. <br /> すなわち、関手に対して恒等射および射の合成を保存することが要請される。<br /> <br /> === 反変関手 ===<br /> 関手に似た形式を持ちながら、射を反転させる(合成を逆向きにする)ような対応が多数存在する。そこで、{{mathcal|C}} から {{mathcal|D}} への &#039;&#039;&#039;反変関手&#039;&#039;&#039;(はんへんかんしゅ、{{lang|en|contravariant functor}}){{mvar|F}} が、各対象 {{math|&#039;&#039;X&#039;&#039; &amp;isin; {{mathcal|C}}}} を 対象 {{math|&#039;&#039;F&#039;&#039;(&#039;&#039;X&#039;&#039;) &amp;isin; {{mathcal|D}}}} に対応させ、各射 {{math|&#039;&#039;f&#039;&#039;: &#039;&#039;X&#039;&#039; → &#039;&#039;Y&#039;&#039; &amp;isin; {{mathcal|C}}}} を射 {{math|&#039;&#039;F&#039;&#039;(&#039;&#039;f&#039;&#039;): &#039;&#039;F&#039;&#039;(&#039;&#039;Y&#039;&#039;) → &#039;&#039;F&#039;&#039;(&#039;&#039;X&#039;&#039;) &amp;isin; {{mathcal|D}}}} に対応させるとき、以下の性質<br /> * 全ての対象 {{math|&#039;&#039;X&#039;&#039; &amp;isin; {{mathcal|&#039;&#039;C&#039;&#039;}}}} において {{math|1=&#039;&#039;F&#039;&#039;(id&lt;sub&gt;&#039;&#039;X&#039;&#039;&lt;/sub&gt;) = id&lt;sub&gt;&#039;&#039;F&#039;&#039;(&#039;&#039;X&#039;&#039;)&lt;/sub&gt;}},<br /> * 全ての射 {{math|&#039;&#039;f&#039;&#039;: &#039;&#039;X&#039;&#039; → &#039;&#039;Y&#039;&#039;}} および {{math|&#039;&#039;g&#039;&#039;: &#039;&#039;Y&#039;&#039; → &#039;&#039;Z&#039;&#039;}} に対して {{math|1=&#039;&#039;F&#039;&#039;(&#039;&#039;g&#039;&#039; ∘ &#039;&#039;f&#039;&#039;) = &#039;&#039;F&#039;&#039;(&#039;&#039;f&#039;&#039;) ∘ &#039;&#039;F&#039;&#039;(&#039;&#039;g&#039;&#039;)}}<br /> を満たすものとして定義される。<br /> <br /> === 注意 ===<br /> {{mathcal|C}} の[[双対圏]] {{math|{{mathcal|C}}{{sup|op}}}} を考えるならば、反変関手 {{math|&#039;&#039;F&#039;&#039;: {{mathcal|C}} → {{mathcal|D}}}} をかわりに(共変)関手 {{math|&#039;&#039;F&#039;&#039;: {{mathcal|C}}{{sup|op}} → {{mathcal|D}}}}(場合によっては {{math|&#039;&#039;F&#039;&#039;: {{mathcal|C}} → {{mathcal|D}}{{sup|op}}}})と見ることによって、共変関手の概念だけで処理することができる。<br /> <br /> 反変関手はまれに「余関手」(よかんしゅ、{{lang|en|cofunctor}})と呼ばれることもあるが、圏論の文脈で「(圏論的)双対」(つまり「全ての矢印を逆向きにする」)を意味する接頭辞「余」の使い方とは乖離がある。(共変)関手 {{mvar|F}} は射 {{math|&#039;&#039;f&#039;&#039;: &#039;&#039;X&#039;&#039; → &#039;&#039;Y&#039;&#039;}} を射 {{math|&#039;&#039;F&#039;&#039;(&#039;&#039;f&#039;&#039;): &#039;&#039;F&#039;&#039;(&#039;&#039;X&#039;&#039;) → &#039;&#039;F&#039;&#039;(&#039;&#039;Y&#039;&#039;)}} に対応させるものだが、ここで双対を得るために全ての矢印を逆向きにするなら射 {{math|&#039;&#039;f&#039;&#039;: &#039;&#039;X&#039;&#039; ← &#039;&#039;Y&#039;&#039;}} に射 {{math|&#039;&#039;F&#039;&#039;(&#039;&#039;f&#039;&#039;): &#039;&#039;F&#039;&#039;(&#039;&#039;X&#039;&#039;) ← &#039;&#039;F&#039;&#039;(&#039;&#039;Y&#039;&#039;)}} が対応することになる。これは結局のところ普通の共変関手の概念を表している。つまり関手とは自己双対的な概念であり、字義どおりにとらえるなら余関手と関手とは同じ概念を表している。<br /> <br /> == 性質 ==<br /> 関手の[[公理]]からの重要な帰結として<br /> * {{mvar|F}} は {{mathcal|C}} における[[可換図式]]を {{mathcal|D}} における可換図式へうつす。<br /> * {{mvar|f}} が {{mathcal|C}} における[[同型射]]ならば {{math|&#039;&#039;F&#039;&#039;(&#039;&#039;f&#039;&#039;)}} は {{mathcal|D}} における同型射<br /> の二つがあげられる。<br /> <br /> いかなる圏 {{mathcal|C}} においても、&#039;&#039;&#039;{{vanc|恒等関手|恒等函手}}&#039;&#039;&#039;(こうとうかんしゅ、{{lang|en|identity functor}}){{math|1{{sub|{{mathcal|C}}}}}} が、どの対象も射もそれ自身へうつすものとして定まる。函手 {{math|&#039;&#039;F&#039;&#039;: {{mathcal|A}} → {{mathcal|B}}}} および {{math|&#039;&#039;G&#039;&#039;: {{mathcal|B}} → {{mathcal|C}}}} に対し、それらの合成 {{math|&#039;&#039;GF&#039;&#039;: {{mathcal|A}} → {{mathcal|C}}}} を考えることができる。関手の合成は、それが定義される限り結合的である。このことから、関手が[[圏の圏]]における射となることが示される。<br /> <br /> 唯一つの対象からなる圏は、射をその元とし、合成をその演算とするような[[モノイド]]と同値である。圏と見なしたモノイドの間の関手はモノイドの準同型に他ならない。その意味で、勝手な圏の間の関手は、モノイドの準同型の、二つ以上の対象を持つ圏へのある種の一般化になっている。<br /> <br /> == 自然変換 ==<br /> {{main|自然変換}}<br /> 圏として定式化された数学理論の上に関手によってさまざまな自然な構成が与えられるが、自然変換によって2つの構成を比較する「自然な準同型」が記述される。時に2つの見かけ上異なった構成が同等の概念を定めていることがあるが、この状況は2つの関手の間の&#039;&#039;&#039;自然同型&#039;&#039;&#039;になっている自然変換によってとらえられる。<br /> <br /> {{mvar|F, G}} が圏 {{mathcal|C}} と {{mathcal|D}} の間の(共変)関手であるとき、{{mvar|F}} から {{mvar|G}} への&#039;&#039;&#039;自然変換&#039;&#039;&#039; {{mvar|η}} は {{mathcal|C}} に含まれる全ての対象 {{mvar|X}} に対し {{mathcal|D}} の射 {{math|&#039;&#039;η{{sub|X}}&#039;&#039;: &#039;&#039;F&#039;&#039;(&#039;&#039;X&#039;&#039;) → &#039;&#039;G&#039;&#039;(&#039;&#039;X&#039;&#039;)}} を与える。このとき、{{mathcal|C}} の任意の射 {{math|&#039;&#039;f&#039;&#039;: &#039;&#039;X&#039;&#039; → &#039;&#039;Y&#039;&#039;}} に対し、{{math|1=&#039;&#039;η{{sub|Y}}&#039;&#039; ∘ &#039;&#039;F&#039;&#039;(&#039;&#039;f&#039;&#039;) = &#039;&#039;G&#039;&#039;(&#039;&#039;f&#039;&#039;) ∘ &#039;&#039;η{{sub|X}}&#039;&#039;}} が成り立つ。 これは即ち、以下の図式[[画像:NaturalTransformation-01.png|center|自然変換を定義する可換図式]]が[[可換図式|可換]]になることを意味している。<br /> <br /> 函手 {{mvar|F}} から {{mvar|G}} への自然変換 {{mvar|η}} が存在して {{mvar|η{{sub|X}}}} が {{mathcal|C}} に含まれる全ての対象 {{mvar|X}} に対して[[同型射]]となるとき、この自然変換は&#039;&#039;&#039;自然同型&#039;&#039;&#039;であるといい、{{math|&#039;&#039;F&#039;&#039; ≈{{sub|&#039;&#039;η&#039;&#039;}} &#039;&#039;G&#039;&#039;}} などと書く。圏 {{mathcal|C, D}} の間の関手 {{math|&#039;&#039;F&#039;&#039;: {{mathcal|C}} → {{mathcal|D}}, &#039;&#039;G&#039;&#039;: {{mathcal|D}} → {{mathcal|C}}}} について自然同型 {{math|&#039;&#039;GF&#039;&#039; ≈ Id{{sub|{{mathcal|C}}}}, &#039;&#039;FG&#039;&#039; ≈ Id{{sub|{{mathcal|D}}}}}} がともに成り立つならば {{mathcal|C}} と {{mathcal|D}} は同等なもの(&#039;&#039;&#039;[[圏同値]]&#039;&#039;&#039;)と見なされる(さらにこれら二つの自然同型 (≈) が厳密に等号 (=) で成り立つ{{ill2|圏同型|en|Isomorphism of categories}}を考えることもできるが、実用上これは条件として強すぎる)。<br /> <br /> {{mathcal|C}} から {{mathcal|D}} への関手を対象とし、関手の間の自然変換を射とすることで&#039;&#039;&#039;[[関手圏]]&#039;&#039;&#039; {{math|Funct({{mathcal|C}}, {{mathcal|D}})}} が考えられる。こうして得られる圏に図式の圏や前層の圏、層の圏がある。また、群 {{mvar|G}} が[[群の作用|作用]]する集合の圏は {{mvar|G}} を圏と見なしたときの {{math|Funct(&#039;&#039;G&#039;&#039;, &#039;&#039;&#039;Sets&#039;&#039;&#039;)}} と同値になる&lt;ref&gt;{{nlab|id=G-set}} 4. Equivalent characterizations&lt;/ref&gt;。<br /> <br /> == 関手に対する様々な条件 ==<br /> 以下 {{math|&#039;&#039;F&#039;&#039;: {{mathcal|C}} → {{mathcal|D}}}} を関手とする。<br /> ; [[忠実関手]]と[[充満関手]]<br /> : {{mathcal|C}} の任意の対象 {{mvar|X, Y}} について {{math|&#039;&#039;F&#039;&#039;: Hom{{sub|{{mathcal|C}}}}(&#039;&#039;X&#039;&#039;, &#039;&#039;Y&#039;&#039;) → Hom{{sub|{{mathcal|D}}}}(&#039;&#039;FX&#039;&#039;, &#039;&#039;FY&#039;&#039;); &#039;&#039;f&#039;&#039; → &#039;&#039;F&#039;&#039;(&#039;&#039;f&#039;&#039;)}} が[[モノ射|単射]]のとき {{mvar|F}} は&#039;&#039;&#039;忠実&#039;&#039;&#039;であるといい、この対応が[[エピ射|全射]]のとき {{mvar|F}} は&#039;&#039;&#039;充満&#039;&#039;&#039;であるという。<br /> ; [[随伴関手]]<br /> : 函手 {{mvar|F}} に対して函手 {{math|&#039;&#039;G&#039;&#039;: {{mathcal|D}} → {{mathcal|C}}}} が {{math|Hom{{sub|{{mathcal|D}}}}(&#039;&#039;FX&#039;&#039;, &#039;&#039;Y&#039;&#039;) ≡ Hom{{sub|{{mathcal|C}}}}(&#039;&#039;X&#039;&#039;, &#039;&#039;GY&#039;&#039;)}} を満たすならば {{mvar|F}} は {{mvar|G}} の&#039;&#039;&#039;左随伴&#039;&#039;&#039;であると言い、 {{mvar|G}} は {{mvar|F}} の&#039;&#039;&#039;右随伴&#039;&#039;&#039;であると言う。<br /> ; [[加法的関手]]<br /> : 射の集合が[[アーベル群]]となっている圏({{mathbf|Ab}}-豊饒圏)の間の函手が、射の集合の間の群準同型を与えるならば&#039;&#039;&#039;加法的&#039;&#039;&#039;であると言う。<br /> ; [[完全関手]]<br /> : [[短完全列]] を短完全列に写すような関手は&#039;&#039;&#039;完全&#039;&#039;&#039;であると言い、完全関手は任意の完全系列を保つ。有限の極限のみを保つ関手は&#039;&#039;&#039;左完全&#039;&#039;&#039;、双対的に有限の余極限のみを保つ関手は&#039;&#039;&#039;右完全&#039;&#039;&#039;と言う。<br /> <br /> == 表現可能関手 ==<br /> 圏 {{mathcal|C}} の対象 {{mvar|X}} について {{math|Hom{{sub|{{mathcal|C}}}}(&amp;mdash;, &#039;&#039;X&#039;&#039;)}} や {{math|Hom{{sub|{{mathcal|C}}}}(&#039;&#039;X&#039;&#039;, &amp;mdash;)}} の形にかけるような {{mathcal|C}} から [[集合の圏|&#039;&#039;&#039;Sets&#039;&#039;&#039;]] (または {{mathcal|C}} の hom-集合の[[豊饒圏|構造]]を表すしかるべき圏)への関手は&#039;&#039;&#039;[[表現可能関手]]&#039;&#039;&#039;とよばれる。[[米田の補題]]によって表現可能関手たちとその間の自然変換はもとの圏の構造を完全に反映していることが知られる。数学のさまざまな場面で与えられた関手が表現可能であるかどうかやどんな対象によって表現されるか、あるいはその関手が表現可能になるように圏を変形できるかということが問題になる。<br /> <br /> 特定の形の図式に関する極限は図式圏への対角埋め込み関手に対する右随伴関手として定式化できる。[[テンソル積]]や対象積、交代積は多重線形写像の関手を表現するような対象として定式化できる。<br /> <br /> ==例==<br /> ; {{vanc|自己関手|自己函手}}<br /> : 圏 {{mathcal|C}} から同じ圏 {{mathcal|C}} への関手は、&#039;&#039;&#039;自己関手&#039;&#039;&#039;(じこかんしゅ、{{lang|en|&#039;&#039;endofunctor&#039;&#039;}})と呼ばれる。恒等関手は自己関手の自明な例である。また、圏 {{mathcal|C}} から、その[[部分圏]] {{mathcal|D}} への関手は、圏 {{mathcal|C}} における自己関手でもある。<br /> ; {{vanc|定関手|定函手|定値函手|選択函手}}<br /> : 空でない圏 {{mathcal|D}} の対象 &#039;&#039;X&#039;&#039; について、任意の圏 {{mathcal|C}} から {{mathcal|D}} への &#039;&#039;X&#039;&#039; が定める&#039;&#039;&#039;定関手&#039;&#039;&#039;(ていかんしゅ、{{lang|en|constant functor}})を以下のようにして構成できる: {{mathcal|C}} の全ての対象を &#039;&#039;X&#039;&#039; に写し、{{mathcal|C}} の全ての射を &#039;&#039;X&#039;&#039; の恒等射に写す。定関手は {{lang|en|&#039;&#039;selection functor&#039;&#039;}} ともよばれる。<br /> ; 冪集合関手<br /> : [[集合の圏]] {{math|&#039;&#039;&#039;Sets&#039;&#039;&#039;}} からそれ自身への関手 {{mvar|P}} を、各集合をその[[冪集合]]へと写し、各写像 {{math|&#039;&#039;f&#039;&#039;: &#039;&#039;X&#039;&#039; → &#039;&#039;Y&#039;&#039;}} を写像 {{math|&#039;&#039;X&#039;&#039; &amp;sup; &#039;&#039;U&#039;&#039; → &#039;&#039;f&#039;&#039;(&#039;&#039;U&#039;&#039;) &amp;sub; &#039;&#039;Y&#039;&#039;}} に写すことにより考えることができる。また写像 {{math|&#039;&#039;f&#039;&#039;: &#039;&#039;X&#039;&#039; → &#039;&#039;Y&#039;&#039;}} を {{math|&#039;&#039;Y &#039;&#039; &amp;sup; &#039;&#039;U&#039;&#039; → &#039;&#039;f&#039;&#039;&lt;sup&gt;&amp;minus;1&lt;/sup&gt;(&#039;&#039;U&#039;&#039;) &amp;sub; &#039;&#039;X&#039;&#039;}} なる写像に対応させることで反変の冪集合関手を考えることもできる。反変版の冪集合関手は2点集合によって表現されている。<br /> ; 双対ベクトル空間<br /> : [[可換体]] {{mvar|K}} 上の[[ベクトル空間]]をその[[双対空間]]に対応させ、[[線型写像]]をその[[転置写像]]に対応させることで、{{mvar|K}}-ベクトル空間の圏からそれ自身への反変関手が構成できる。<br /> ; [[基本群]]と[[基本亜群]]<br /> : [[点つき位相空間]]、すなわち基点を伴った[[位相空間]]の圏を考える。その対象は位相空間 {{mvar|X}} と {{mvar|X}} の固定した一点 {{mvar|x}} の組 {{math|(&#039;&#039;X&#039;&#039;, &#039;&#039;x&#039;&#039;)}} で、{{math|(&#039;&#039;X&#039;&#039;, &#039;&#039;x&#039;&#039;)}} から {{math|(&#039;&#039;Y&#039;&#039;, &#039;&#039;y&#039;&#039;)}} への射は {{math|1=&#039;&#039;f&#039;&#039;(&#039;&#039;x&#039;&#039;) = &#039;&#039;y&#039;&#039;}} となる(基点を基点に写す)[[連続写像]] {{math|&#039;&#039;f&#039;&#039;: &#039;&#039;X&#039;&#039; → &#039;&#039;Y&#039;&#039;}} によって与えられる。<br /> : 点つき位相空間 {{math|(&#039;&#039;X&#039;&#039;, &#039;&#039;x&#039;&#039;)}} に対して、[[基本群]] {{math|π{{sub|1}}(&#039;&#039;X&#039;&#039;, &#039;&#039;x&#039;&#039;)}} が {{mvar|x}} を基点とする {{mvar|X}} 内のループの[[ホモトピー]]類のなす[[群 (数学)|群]]として定義できる。{{math|&#039;&#039;f&#039;&#039;: (&#039;&#039;X&#039;&#039;, &#039;&#039;x&#039;&#039;) → (&#039;&#039;Y&#039;&#039;, &#039;&#039;y&#039;&#039;)}} が点つき位相空間の射ならば、{{mvar|X}} 内の {{mvar|x}} を基点とした全ての閉道は、{{mvar|y}} を基点とする {{mvar|Y}} 内の閉道に写される。この操作は[[ホモトピー同値]]と閉道の合成とに両立するから {{math|&#039;&#039;π&#039;&#039;(&#039;&#039;X&#039;&#039;, &#039;&#039;x&#039;&#039;)}} から {{math|&#039;&#039;π&#039;&#039;(&#039;&#039;Y&#039;&#039;, &#039;&#039;y&#039;&#039;)}} への群の[[準同型写像]]を得る。ここから、点つき位相空間の圏から群の圏への関手が得られる。<br /> : 基点を特に指定しない位相空間の圏では一般のパスについて(端点を固定した)ホモトピー類を考えることができる。こうして位相空間の圏から小さな圏の圏への共変関手である[[基本亜群]] {{math|Π}} が得られるが、これは {{mvar|X}} のそれぞれの点を基点にして得られる基本群と、パスの合成によって与えられる基点の取り替えを表現していると見なせる。連続写像 {{math|&#039;&#039;f&#039;&#039;: &#039;&#039;X&#039;&#039; → &#039;&#039;Y&#039;&#039;}} に対応する射 {{math|Π}} は函手 {{math|Π&#039;&#039;X&#039;&#039; → Π&#039;&#039;Y&#039;&#039;}} になっている。<br /> ; [[導来関手]]<br /> :アーベル圏の上の(コ)ホモロジー的関手はしばしば片側完全関手の&#039;&#039;&#039;導来関手&#039;&#039;&#039;として定式化される。<br /> ; [[忘却関手]]と[[自由関手]]<br /> : {{mathcal|C}} が、{{mathcal|D}} の対象のうちでさらに付加的な構造を持つものの圏として定式化されているとき、{{mathcal|C}} の対象の付加的な構造を無視することで {{mathcal|C}} から {{mathcal|D}} への&#039;&#039;&#039;忘却関手&#039;&#039;&#039;(ぼうきゃくかんしゅ、{{lang|en|forgetful functor}})を考えることができる。忘却関手の左随伴関手になっているような関手は&#039;&#039;&#039;自由関手&#039;&#039;&#039;(じゆうかんしゅ、{{lang|en|free functor}})とよばれる。<br /> : 例えば複素数体上のベクトル空間の圏において、各ベクトル空間を単に集合と見なし、各[[線型写像]]を単に集合間の写像と見なして集合の圏への忘却関手を構成できる。各集合に対してその元の形式的な[[線型結合]]の空間を考えることで、この忘却関手に体する左随伴関手が構成される。<br /> ; 定数関数環<br /> : [[位相空間の圏|位相空間とその間の連続写像を射とする圏]]から実[[多元環|結合的多元環]]の圏への反変関手が、各位相空間 {{mvar|X}} に対してその上の実数値連続関数全体の成す多元環 {{math|&#039;&#039;C&#039;&#039;(&#039;&#039;X&#039;&#039;)}} を対応させることによって定まる。各連続写像 {{math|&#039;&#039;f&#039;&#039;: &#039;&#039;X&#039;&#039; → &#039;&#039;Y&#039;&#039;}} は各 {{math|&#039;&#039;φ&#039;&#039; &amp;isin; &#039;&#039;C&#039;&#039;(&#039;&#039;Y&#039;&#039;)}} に対して {{math|1=&#039;&#039;C&#039;&#039;(&#039;&#039;f&#039;&#039;)(&#039;&#039;φ&#039;&#039;) {{coloneqq}} &#039;&#039;φ&#039;&#039; ∘ &#039;&#039;f&#039;&#039;}} と置くことにより、多元環の準同型 {{math|&#039;&#039;C&#039;&#039;(&#039;&#039;f&#039;&#039;): &#039;&#039;C&#039;&#039;(&#039;&#039;Y&#039;&#039;) → &#039;&#039;C&#039;&#039;(&#039;&#039;X&#039;&#039;)}} を引き起こす。<br /> ; 接函手と余接函手<br /> : [[可微分多様体]]をその[[接ベクトル束]]へうつし、[[可微分写像|滑らかな写像]]をその[[写像の微分|微分]]にうつす写像は、[[可微分多様体の圏]]から[[ベクトル束]]の圏への共変関手である。同様に、可微分多様体をその[[余接ベクトル束]]へうつし、滑らかな写像をその{{ill2|引き戻し (微分幾何学)|label=引き戻し|en|Pullback (differential geometry)}}へうつす写像は反変関手を定める。<br /> : これらの構成を点ごとで考えると、基点付き可微分多様体の圏から実ベクトル空間の圏への共変および反変関手が得られる。<br /> ; リー環構成<br /> : 実または複素[[リー群]]に対して、その付随する実または複素[[リー環]]を対応付けることで関手が定まる。<br /> ;テンソル積構成<br /> : {{mathcal|C}} をある固定された体上のベクトル空間の圏で、その射として[[線型写像]]をとるとき、[[テンソル積]] {{math|&#039;&#039;V&#039;&#039; &amp;otimes; &#039;&#039;W&#039;&#039;}} は、どちらの引数に関しても共変な関手 {{math|{{mathcal|C}} × {{mathcal|C}} → {{mathcal|C}}}} を定める。<br /> <br /> == 関連項目 ==<br /> *[[カン拡張]]<br /> <br /> == 出典 ==<br /> {{reflist}}<br /> <br /> == 外部リンク ==<br /> * {{MathWorld|urlname=Functor|title=Functor}}<br /> * {{MathWorld|urlname=CovariantFunctor|title=Covariant Functor|author=Barile, Margherita}}<br /> * {{MathWorld|urlname=ContravariantFunctor|title=Contravariant Functor|author=Barile, Margherita}}<br /> * {{PlanetMath|urlname=Functor|title=functor}}<br /> * {{SpringerEOM|urlname=Functor|title=Functor}}<br /> * {{nlab|urlname=functor|title=functor}}<br /> <br /> {{Functors}}<br /> {{DEFAULTSORT:かんしゆ}}<br /> [[Category:関手|*]]<br /> [[Category:圏論]]<br /> [[Category:数学に関する記事]]</div> 1.115.10.45
Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46