Warning : Undefined variable $type in /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php on line 3
Warning : "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /home/users/1/sub.jp-asate/web/wiki/includes/json/FormatJson.php on line 297
Warning : Trying to access array offset on value of type bool in /home/users/1/sub.jp-asate/web/wiki/includes/Setup.php on line 660
Warning : session_name(): Session name cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/Setup.php on line 834
Warning : ini_set(): Session ini settings cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 126
Warning : ini_set(): Session ini settings cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 127
Warning : session_cache_limiter(): Session cache limiter cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 133
Warning : session_set_save_handler(): Session save handler cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 140
Warning : "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /home/users/1/sub.jp-asate/web/wiki/languages/LanguageConverter.php on line 773
Warning : Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/Feed.php on line 294
Warning : Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/Feed.php on line 300
Warning : Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46
Warning : Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46
Warning : Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46
https:///mymemo.xyz/wiki/api.php?action=feedcontributions&feedformat=atom&user=114.49.7.26
miniwiki - 利用者の投稿記録 [ja]
2025-01-15T07:34:37Z
利用者の投稿記録
MediaWiki 1.31.0
十六元数
2016-12-29T14:45:02Z
<p>114.49.7.26: </p>
<hr />
<div>[[抽象代数学]]における'''十六元数'''(じゅうろくげんすう、<em lang="en">sedenion</em>)は、全体として[[実数]]体 {{math|'''R'''}} 上{{math|16}}次元の(双線型な乗法を持つベクトル空間という意味での)非結合的[[多元環|分配多元環]]を成す代数的な対象で、その全体はしばしば {{math|'''S'''}} で表される。[[八元数]]に[[ケーリー=ディクソンの構成法]]を使って得られる対合的二次代数である。<br />
<br />
「十六元数」という用語は、他の十六次元代数構造、例えば[[四元数]]の複製二つの[[多元環のテンソル積|テンソル積]]や実数体上の四次正方行列環などに対しても用いられ、{{harvtxt|Smith |1995}} で調べられている。<br />
<br />
== 算術 ==<br />
ケーリーの八元数と同様に十六元数の乗法は[[交換法則|可換]]でも[[結合法則|結合的]]でもない。そして、ケーリーの八元数環 {{math|'''O'''}} と明確に違うことに、十六元数の全体 {{math|'''S'''}} は[[交代代数]]にもならない。十六元数についていえることは{{仮リンク|冪結合性|en|Power associativity}}を持っているということである。これは {{math|'''S'''}} の元 {{mvar|x}} に対して、冪 {{mvar|x{{exp|n}}}} は[[well-defined|矛盾なく定義可能]]で、それらが{{仮リンク|柔軟恒等式|label=柔軟|en|flexible identity}}であることを意味する。<br />
<br />
任意の十六元数は、{{math|'''R'''}}-[[ベクトル空間]]としての {{math|'''S'''}} の[[基底 (線型代数学)|基底]]を成す16個の単位十六元数 {{math|{{mvar|e}}{{ind|0}} {{=}} 1, {{mvar|e}}{{ind|1}}, {{mvar|e}}{{ind|2}}, {{mvar|e}}{{ind|3}}, …, {{mvar|e}}{{ind|15}}}} の実係数[[線型結合]]になっている。<br />
<br />
十六元数は乗法に関する単位元を持ち、多くの元がその逆元を持つが、[[多元体]]とはならない。これは[[零因子]]の存在による。つまり、それ自体は零ではないが掛けると零になるような十六元数の組があるのだが、簡単な例としては {{math|({{mvar|e}}{{ind|3}} + {{mvar|e}}{{ind|10}}) × ({{mvar|e}}{{ind|6}} − {{mvar|e}}{{ind|15}})}} などを挙げることができる。十六元数からケーリー=ディクソンの構成法を元にして作られるどの超複素数系も零因子を含む。<br />
<br />
単位十六元数の乗積表は次のようなものである。<br />
{| class="wikitable" style="text-align:right; margin:1ex auto 2ex auto;" align=center<br />
|+ style="font-weight:bold; font-size:larger;" | 基底の乗積表<br />
|- <br />
! {{math|&times;}} !! {{math|1}} !! {{math|''e''{{ind|1}}}} !! {{math|''e''{{ind|2}}}} !! {{math|''e''{{ind|3}}}} !! {{math|''e''{{ind|4}}}} !! {{math|''e''{{ind|5}}}} !! {{math|''e''{{ind|6}}}} !! {{math|''e''{{ind|7}}}} !! {{math|''e''{{ind|8}}}} !! {{math|''e''{{ind|9}}}} !! {{math|''e''{{ind|10}}}} !! {{math|''e''{{ind|11}}}} !! {{math|''e''{{ind|12}}}} !! {{math|''e''{{ind|13}}}} !! {{math|''e''{{ind|14}}}} !! {{math|''e''{{ind|15}}}} <br />
|- <br />
! {{math|1}} <br />
| {{math|1}} || {{math|''e''{{ind|1}}}} || {{math|''e''{{ind|2}}}} || {{math|''e''{{ind|3}}}} || {{math|''e''{{ind|4}}}} || {{math|''e''{{ind|5}}}} || {{math|''e''{{ind|6}}}} || {{math|''e''{{ind|7}}}} || {{math|''e''{{ind|8}}}} || {{math|''e''{{ind|9}}}} || {{math|''e''{{ind|10}}}} || {{math|''e''{{ind|11}}}} || {{math|''e''{{ind|12}}}} || {{math|''e''{{ind|13}}}} || {{math|''e''{{ind|14}}}} || {{math|''e''{{ind|15}}}}</td><br />
|- <br />
! {{math|''e''{{ind|1}}}} <br />
| {{math|''e''{{ind|1}}}} || {{math|&minus;1}} || {{math|''e''{{ind|3}}}} || {{math|&minus;''e''{{ind|2}}}} || {{math|''e''{{ind|5}}}} || {{math|&minus;''e''{{ind|4}}}} || {{math|&minus;''e''{{ind|7}}}} || {{math|''e''{{ind|6}}}} || {{math|''e''{{ind|9}}}} || {{math|&minus;''e''{{ind|8}}}} || {{math|&minus;''e''{{ind|11}}}} || {{math|''e''{{ind|10}}}} || {{math|&minus;''e''{{ind|13}}}} || {{math|''e''{{ind|12}}}} || {{math|''e''{{ind|15}}}} || {{math|&minus;''e''{{ind|14}}}}<br />
|- <br />
! {{math|''e''{{ind|2}}}} <br />
| {{math|''e''{{ind|2}}}} || {{math|&minus;''e''{{ind|3}}}} || {{math|&minus;1}} || {{math|''e''{{ind|1}}}} || {{math|''e''{{ind|6}}}} || {{math|''e''{{ind|7}}}} || {{math|&minus;''e''{{ind|4}}}} || {{math|&minus;''e''{{ind|5}}}} || {{math|''e''{{ind|10}}}} || {{math|''e''{{ind|11}}}} || {{math|&minus;''e''{{ind|8}}}} || {{math|&minus;''e''{{ind|9}}}} || {{math|&minus;''e''{{ind|14}}}} || {{math|&minus;''e''{{ind|15}}}} || {{math|''e''{{ind|12}}}} || {{math|''e''{{ind|13}}}}<br />
|- <br />
! {{math|''e''{{ind|3}}}} <br />
| {{math|''e''{{ind|3}}}} || {{math|''e''{{ind|2}}}} || {{math|&minus;''e''{{ind|1}}}} || {{math|&minus;1}} || {{math|''e''{{ind|7}}}} || {{math|&minus;''e''{{ind|6}}}} || {{math|''e''{{ind|5}}}} || {{math|&minus;''e''{{ind|4}}}} || {{math|''e''{{ind|11}}}} || {{math|&minus;''e''{{ind|10}}}} || {{math|''e''{{ind|9}}}} || {{math|&minus;''e''{{ind|8}}}} || {{math|&minus;''e''{{ind|15}}}} || {{math|''e''{{ind|14}}}} || {{math|&minus;''e''{{ind|13}}}} || {{math|''e''{{ind|12}}}}<br />
|- <br />
! {{math|''e''{{ind|4}}}} <br />
| {{math|''e''{{ind|4}}}} || {{math|&minus;''e''{{ind|5}}}} || {{math|&minus;''e''{{ind|6}}}} || {{math|&minus;''e''{{ind|7}}}} || {{math|&minus;1}} || {{math|''e''{{ind|1}}}} || {{math|''e''{{ind|2}}}} || {{math|''e''{{ind|3}}}} || {{math|''e''{{ind|12}}}} || {{math|''e''{{ind|13}}}} || {{math|''e''{{ind|14}}}} || {{math|''e''{{ind|15}}}} || {{math|&minus;''e''{{ind|8}}}} || {{math|&minus;''e''{{ind|9}}}} || {{math|&minus;''e''{{ind|10}}}} || {{math|&minus;''e''{{ind|11}}}}<br />
|- <br />
! {{math|''e''{{ind|5}}}} <br />
| {{math|''e''{{ind|5}}}} || {{math|''e''{{ind|4}}}} || {{math|&minus;''e''{{ind|7}}}} || {{math|''e''{{ind|6}}}} || {{math|&minus;''e''{{ind|1}}}} || {{math|&minus;1}} || {{math|&minus;''e''{{ind|3}}}} || {{math|''e''{{ind|2}}}} || {{math|''e''{{ind|13}}}} || {{math|&minus;''e''{{ind|12}}}} || {{math|''e''{{ind|15}}}} || {{math|&minus;''e''{{ind|14}}}} || {{math|''e''{{ind|9}}}} || {{math|&minus;''e''{{ind|8}}}} || {{math|''e''{{ind|11}}}} || {{math|&minus;''e''{{ind|10}}}}<br />
|- <br />
! {{math|''e''{{ind|6}}}} <br />
| {{math|''e''{{ind|6}}}} || {{math|''e''{{ind|7}}}} || {{math|''e''{{ind|4}}}} || {{math|&minus;''e''{{ind|5}}}} || {{math|&minus;''e''{{ind|2}}}} || {{math|''e''{{ind|3}}}} || {{math|&minus;1}} || {{math|&minus;''e''{{ind|1}}}} || {{math|''e''{{ind|14}}}} || {{math|&minus;''e''{{ind|15}}}} || {{math|&minus;''e''{{ind|12}}}} || {{math|''e''{{ind|13}}}} || {{math|''e''{{ind|10}}}} || {{math|&minus;''e''{{ind|11}}}} || {{math|&minus;''e''{{ind|8}}}} || {{math|''e''{{ind|9}}}}<br />
|- <br />
! {{math|''e''{{ind|7}}}} <br />
| {{math|''e''{{ind|7}}}} || {{math|&minus;''e''{{ind|6}}}} || {{math|''e''{{ind|5}}}} || {{math|''e''{{ind|4}}}} || {{math|&minus;''e''{{ind|3}}}} || {{math|&minus;''e''{{ind|2}}}} || {{math|''e''{{ind|1}}}} || {{math|&minus;1}} || {{math|''e''{{ind|15}}}} || {{math|''e''{{ind|14}}}} || {{math|&minus;''e''{{ind|13}}}} || {{math|&minus;''e''{{ind|12}}}} || {{math|''e''{{ind|11}}}} || {{math|''e''{{ind|10}}}} || {{math|&minus;''e''{{ind|9}}}} || {{math|&minus;''e''{{ind|8}}}}<br />
|- <br />
! {{math|''e''{{ind|8}}}} <br />
| {{math|''e''{{ind|8}}}} || {{math|&minus;''e''{{ind|9}}}} || {{math|&minus;''e''{{ind|10}}}} || {{math|&minus;''e''{{ind|11}}}} || {{math|&minus;''e''{{ind|12}}}} || {{math|&minus;''e''{{ind|13}}}} || {{math|&minus;''e''{{ind|14}}}} || {{math|&minus;''e''{{ind|15}}}} || {{math|&minus;1}} || {{math|''e''{{ind|1}}}} || {{math|''e''{{ind|2}}}} || {{math|''e''{{ind|3}}}} || {{math|''e''{{ind|4}}}} || {{math|''e''{{ind|5}}}} || {{math|''e''{{ind|6}}}} || {{math|''e''{{ind|7}}}}<br />
|- <br />
! {{math|''e''{{ind|9}}}} <br />
| {{math|''e''{{ind|9}}}} || {{math|''e''{{ind|8}}}} || {{math|&minus;''e''{{ind|11}}}} || {{math|''e''{{ind|10}}}} || {{math|&minus;''e''{{ind|13}}}} || {{math|''e''{{ind|12}}}} || {{math|''e''{{ind|15}}}} || {{math|&minus;''e''{{ind|14}}}} || {{math|&minus;''e''{{ind|1}}}} || {{math|&minus;1}} || {{math|&minus;''e''{{ind|3}}}} || {{math|''e''{{ind|2}}}} || {{math|&minus;''e''{{ind|5}}}} || {{math|''e''{{ind|4}}}} || {{math|''e''{{ind|7}}}} || {{math|&minus;''e''{{ind|6}}}}<br />
|- <br />
! {{math|''e''{{ind|10}}}} <br />
| {{math|''e''{{ind|10}}}} || {{math|''e''{{ind|11}}}} || {{math|''e''{{ind|8}}}} || {{math|&minus;''e''{{ind|9}}}} || {{math|&minus;''e''{{ind|14}}}} || {{math|&minus;''e''{{ind|15}}}} || {{math|''e''{{ind|12}}}} || {{math|''e''{{ind|13}}}} || {{math|&minus;''e''{{ind|2}}}} || {{math|''e''{{ind|3}}}} || {{math|&minus;1}} || {{math|&minus;''e''{{ind|1}}}} || {{math|&minus;''e''{{ind|6}}}} || {{math|&minus;''e''{{ind|7}}}} || {{math|''e''{{ind|4}}}} || {{math|''e''{{ind|5}}}}<br />
|- <br />
! {{math|''e''{{ind|11}}}} <br />
| {{math|''e''{{ind|11}}}} || {{math|&minus;''e''{{ind|10}}}} || {{math|''e''{{ind|9}}}} || {{math|''e''{{ind|8}}}} || {{math|&minus;''e''{{ind|15}}}} || {{math|''e''{{ind|14}}}} || {{math|&minus;''e''{{ind|13}}}} || {{math|''e''{{ind|12}}}} || {{math|&minus;''e''{{ind|3}}}} || {{math|&minus;''e''{{ind|2}}}} || {{math|''e''{{ind|1}}}} || {{math|&minus;1}} || {{math|&minus;''e''{{ind|7}}}} || {{math|''e''{{ind|6}}}} || {{math|&minus;''e''{{ind|5}}}} || {{math|''e''{{ind|4}}}}<br />
|- <br />
! {{math|''e''{{ind|12}}}} <br />
| {{math|''e''{{ind|12}}}} || {{math|''e''{{ind|13}}}} || {{math|''e''{{ind|14}}}} || {{math|''e''{{ind|15}}}} || {{math|''e''{{ind|8}}}} || {{math|&minus;''e''{{ind|9}}}} || {{math|&minus;''e''{{ind|10}}}} || {{math|&minus;''e''{{ind|11}}}} || {{math|&minus;''e''{{ind|4}}}} || {{math|''e''{{ind|5}}}} || {{math|''e''{{ind|6}}}} || {{math|''e''{{ind|7}}}} || {{math|&minus;1}} || {{math|&minus;''e''{{ind|1}}}} || {{math|&minus;''e''{{ind|2}}}} || {{math|&minus;''e''{{ind|3}}}}<br />
|- <br />
! {{math|''e''{{ind|13}}}} <br />
| {{math|''e''{{ind|13}}}} || {{math|&minus;''e''{{ind|12}}}} || {{math|''e''{{ind|15}}}} || {{math|&minus;''e''{{ind|14}}}} || {{math|''e''{{ind|9}}}} || {{math|''e''{{ind|8}}}} || {{math|''e''{{ind|11}}}} || {{math|&minus;''e''{{ind|10}}}} || {{math|&minus;''e''{{ind|5}}}} || {{math|&minus;''e''{{ind|4}}}} || {{math|''e''{{ind|7}}}} || {{math|&minus;''e''{{ind|6}}}} || {{math|''e''{{ind|1}}}} || {{math|&minus;1}} || {{math|''e''{{ind|3}}}} || {{math|&minus;''e''{{ind|2}}}}<br />
|- <br />
! {{math|''e''{{ind|14}}}} <br />
| {{math|''e''{{ind|14}}}} || {{math|&minus;''e''{{ind|15}}}} || {{math|&minus;''e''{{ind|12}}}} || {{math|''e''{{ind|13}}}} || {{math|''e''{{ind|10}}}} || {{math|&minus;''e''{{ind|11}}}} || {{math|''e''{{ind|8}}}} || {{math|''e''{{ind|9}}}} || {{math|&minus;''e''{{ind|6}}}} || {{math|&minus;''e''{{ind|7}}}} || {{math|&minus;''e''{{ind|4}}}} || {{math|''e''{{ind|5}}}} || {{math|''e''{{ind|2}}}} || {{math|&minus;''e''{{ind|3}}}} || {{math|&minus;1}} || {{math|''e''{{ind|1}}}}<br />
|- <br />
! {{math|''e''{{ind|15}}}} <br />
| {{math|''e''{{ind|15}}}} || {{math|''e''{{ind|14}}}} || {{math|&minus;''e''{{ind|13}}}} || {{math|&minus;''e''{{ind|12}}}} || {{math|''e''{{ind|11}}}} || {{math|''e''{{ind|10}}}} || {{math|&minus;''e''{{ind|9}}}} || {{math|''e''{{ind|8}}}} || {{math|&minus;''e''{{ind|7}}}} || {{math|''e''{{ind|6}}}} || {{math|&minus;''e''{{ind|5}}}} || {{math|&minus;''e''{{ind|4}}}} || {{math|''e''{{ind|3}}}} || {{math|''e''{{ind|2}}}} || {{math|&minus;''e''{{ind|1}}}} || &minus;1<br />
|}<br />
<br />
一般の十六元数の積は基底における乗法を([[分配法則]]が成り立つように)線型に拡張することで得られる。<br />
<br />
十六元数の全体 {{math|'''S'''}} は共軛元をとる主[[対合]]<br />
: <math>x = \sum_{i=0}^{15} x_i e_i \mapsto x^* := x_0 1 - \sum_{i=1}^{15} x_i e_i</math><br />
によってノルム<br />
: <math>N(x) := xx^* = \sum_{i=0}^{15} x_i^2\quad(\text{or }\|x\|:=\sqrt{xx^*})</math><br />
の定まる二次代数 {{math|('''S''', ''N'')}} であるが、これは[[合成代数|ノルムが乗法的]]でない。<br />
<br />
== 応用 ==<br />
{{harvtxt|Moreno|1998}} はノルム 1 の十六元数からなる掛けて {{math|0}} となる対の全体が、例外型リー群 [[G2 (数学)|''G''<sub>2</sub>]] のコンパクト型に同型であることを示した。<br />
<br />
== 関連項目 ==<br />
* [[超複素数系]]<br />
* [[分解型複素数]]<br />
<br />
== 参考文献 ==<br />
<br />
*{{Citation | last1=Imaeda | first1=K. | last2=Imaeda | first2=M. | title=Sedenions: algebra and analysis | doi=10.1016/S0096-3003(99)00140-X | mr=1786945 | year=2000 | journal=Applied mathematics and computation | volume=115 | issue=2 | pages=77–88}}<br />
* Kinyon, M.K., Phillips, J.D., Vojtěchovský, P.: ''C-loops: Extensions and constructions'', Journal of Algebra and its Applications 6 (2007), no. 1, 1–20. [http://arxiv.org/abs/math/0412390]<br />
* Kivunge, Benard M. and Smith, Jonathan D. H: "[http://www.emis.de/journals/CMUC/pdf/cmuc0402/kivunge.pdf Subloops of sedenions]", Comment.Math.Univ.Carolinae 45,2 (2004)295–302.<br />
*{{Citation | last1=Moreno | first1=Guillermo | title=The zero divisors of the Cayley-Dickson algebras over the real numbers | arxiv=q-alg/9710013 | mr=1625585 | year=1998 | journal=Sociedad Matemática Mexicana. Boletí n. Tercera Serie | volume=4 | issue=1 | pages=13–28}}<br />
*{{Citation | last1=Smith | first1=Jonathan D. H. | title=A left loop on the 15-sphere | doi=10.1006/jabr.1995.1237 | mr=1345298 | year=1995 | journal=[[Journal of Algebra]] | volume=176 | issue=1 | pages=128–138}}<br />
<br />
<br />
{{DEFAULTSORT:しゆうろくけんすう}}<br />
[[Category:超複素数系]]<br />
[[Category:非結合代数]]<br />
[[Category:数学に関する記事]]</div>
114.49.7.26
Warning : Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46