統計量
提供: miniwiki
統計量(とうけいりょう)は、統計学では、一組の標本データに目的に応じた統計学的なアルゴリズム(関数)を適用し得た、データの特徴を要約した数値を指す。なお十分性を持つ統計量は十分統計量と呼ぶ。日本工業規格では、「確率変数の標本の関数」[1]「確率変数だけで規定された関数」[2]と定義している。
概念
例えば簡単な統計量の一例として算術平均を計算する際には、全てのデータ数値を合計しデータ数値の数で割るというアルゴリズムを用いる。
統計学的には、対象とするデータは母集団から抽出される標本であり、標本から直接算出される統計量は観測(観察)できるランダム変数の一種であり、標本の性質を表現する数値である。普通は母集団を母数(観測できない)によって特徴づけられる確率分布として仮定し、そこからあるサイズの標本をランダムに抽出するものとする。母数の値、例えば全国の25歳の男性の身長の平均は観測できないが、それに対応する統計量、例えば100人の身長の平均は観測できる。また母数と対応する統計量(例の場合には母集団平均身長と100人の平均身長)との差(推定量の偏り)もランダム変数であるが、これは観測できるものではないから、統計量ではない。
統計量の種類
統計量は、使用する目的に応じた名が付けられることがある。
母数を統計学的に推定するための統計量を特に推定量(正しくは推定関数)という。
脚注
- ↑ JIS Z 8101-1 : 1999, 2.27 統計量.
- ↑ JIS Z 8101-1 : 2015, 1.8 統計量.
参考文献
- 西岡康夫 『数学チュートリアル やさしく語る 確率統計』 オーム社、2013年。ISBN 9784274214073。
- 日本数学会 『数学辞典』 岩波書店、2007年。ISBN 9784000803090。
- JIS Z 8101-1:1999 統計 − 用語と記号 − 第1部:確率及び一般統計用語, 日本規格協会, (1999)
- JIS Z 8101-1:2015 統計 − 用語と記号 − 第1部:確率及び一般統計用語, 日本規格協会, (2015)
- 伏見康治 『確率論及統計論』 河出書房、1942年。ISBN 9784874720127。