第三軌条方式
第三軌条方式(だいさんきじょうほうしき)は、電気鉄道の集電方式のひとつ。走行用のレールとは別に、並行して第三の給電用レール(第三軌条)を敷設し、それを車両に取り付けた集電靴(コレクターシュー)が擦って集電する方式。
Contents
特徴
架空電車線方式に比べ建設コストが安く、架線柱や架線により景観を損ねないのが利点である。反面、線路敷の低い位置に裸の給電レールを敷設するため、人の立ち入りが容易な路線や駅では感電の危険を伴ううえ、保線作業時においても短絡や感電の危険性が高いため、日本国内では原則として直流を用いるものは750ボルト以下、交流を用いるものは600ボルト以下の低圧で用いること、また人が立ち入る可能性の低い地下鉄道または高架専用敷鉄道に限る旨が国土交通省令、規則、告示で定められている。 構造的には、架空電車線と比べて硬質で柔軟性に乏しい鉄製レールを用いるため離線や摺動騒音を生じやすく、分岐器や踏切の上では給電が途切れる欠点を有する。
また、曲線走行時には摩擦による振動や騒音が大きく、高速運転に適さないのも欠点である。近鉄けいはんな線で95km/h運転が行われているほか(120km/h運転の試験が行われたこともある)、イギリスでも160km/h運転をしている区間もあるが、一般的に200km/h以上の高速運転には向かない。イギリス国内のユーロスターが架空線方式の高速新線(CTRL)に切り替えられたのも、フランス国内との速度差が大きいうえ、英仏海峡トンネルの出口で集電方式の切り換えが発生するという不都合があったからである。
1990年代前半には騒音の低減も狙うべく日本で新幹線のような高速運転を可能とする研究もしていたようだが、低電圧では高速運転に不向きで、高電圧は地表に近い位置での使用が何かと危険であるため断念したという。
第三軌条は地上の低い位置に設置されているが、走行用レールが地表とほぼ同電位であるのに対し、第三軌条は地表に対して公称電圧に等しい電圧を有している。また、第三軌条は車両の重量を支えるわけではないので、走行用レールと同一のレールを使用する必要はなく、走行用レールよりも細いものや、強度は劣るが電気抵抗の低い低炭素鋼レールが用いられている。
第三軌条は地表上低い位置に設置されるため線路を横断する形の平面交差にあまり向かないのも欠点である。ロンドン南郊やベルリンSバーン、シカゴ・Lの郊外地上区間など、踏切のある路線も存在するが、第三軌条の特性の面から大半の路線は立体化されている。なお、日本でも東京メトロ銀座線の上野駅から分岐する上野検車区の手前には一般道路との踏切があるが、この踏切から線路内に人が立ち入らないように、線路側にも電車の通過時のみ開閉する遮断柵が設けられているほか、道路との交差部に第三軌条を設置していない。
日本では一部の地下鉄および、第三軌条方式の地下鉄と直通運転している路線だけに用いられているが、欧米ではロンドン近郊の旧国鉄路線など、地上の路線にも広く採用されている。フランスのピレネー山脈には、"Train Jaune"(トラン・ジョーヌ、黄色い列車)と称する、フランス国鉄(SNCF)の経営による第三軌条集電の小型電車を使用する山岳ローカル線セルダーニュ線も存在する。
第三軌条方式は建設コストの面から、小断面のトンネルで建設しようとする場合に有利で、地下鉄などトンネル断面を小さくしたい場合に採用された。近年は地上路線との乗り入れが普及したため、剛体架線などを使用した架空電車線方式を採用する地下鉄が多く、国内の鉄輪式リニアモーターカーによる地下鉄も、全て架空電車線方式である。
駅のプラットホームや線路敷と道路が近接する場所など係員以外の者が線路敷に立ち入る恐れのある箇所には、感電の危険性と線路内立入禁止である旨を警告表示するよう規定されている。世界的に見て使用電圧は大半の路線が直流900ボルト未満で、1,500ボルトもしくは3,000ボルトを多用する架線集電式より低い。日本国内では直流750ボルト以下、交流600ボルト以下と規定されている。
路面電車でも第三軌条による地表集電方式が用いられている例がある。給電用レールは細かい絶縁区間に分割され、車両の真下の部分にのみ通電されるようになっている。19世紀末に登場したものの安全性に問題がありすぐに姿を消したが、2003年にフランスのボルドーで再度実用化された。路面電車の第三軌条集電方式にはこのほかに地中の溝に給電用レールを敷設する地中溝(コンデュイット)方式が存在した。
日本で最初の採用例
アプト式時代の信越本線横川駅 - 軽井沢駅間(通称「横軽線」)が、第三軌条方式の最初の例である。電圧は直流600ボルトで、下面接触方式であった。架空電車線方式とならなかったのは、多数あるトンネルが蒸気機関車用の断面サイズで作られていたため、架空電車線化するにはトンネル断面高さを大きく広げる工事が必要になり、その見積額が莫大であったので、これより低予算で実現可能な第三軌条方式が採用されたものである。
なお、横川駅および軽井沢駅構内は機関車付け換え作業や貨車入換え作業時の安全性を考慮して架空電車線方式を採ったため(こちらも直流600ボルト)、機関車はいずれも集電靴とパンタグラフ(初期はポール)の双方を装備していた。また、機関車がいずれもロッド駆動であったこともあり、地下鉄車両とは異なり集電靴はいずれも車端部に装備されていた。
上面接触と下面接触
レールの上側と下側のどちらを集電靴が擦るのかは、国によってもさまざまである。
日本では、前項で紹介した信越本線の横軽以外は、すべて上面接触である。一方、日本以外では、ベルリンSバーンなどのように下側に接触しているものもある。
四軌条方式
四軌条方式(Four rail system)はロンドン地下鉄のみで見られるもので、通常位置の第三軌条から集電した電力を、走行用レールではなく、その間に設置した第四軌条に返す方式。
第三軌条方式の採用例
アジア
- 日本
- 大韓民国
- 釜山-金海軽電鉄:直流750V
- 龍仁軽電鉄:直流750V
- 仁川交通公社(2号線):直流750V
- ソウル軽電鉄牛耳新設線:直流750V
- 朝鮮民主主義人民共和国
- 中華人民共和国
- 中華民国(台湾)
- タイ
- バンコク・メトロ:直流750V
- バンコク・スカイトレイン(バンコク大量輸送システム):直流750V
- マレーシア
- クアラルンプール地下鉄(RAPID KL):直流750V、リニアモーター駆動式
- シンガポール
- シンガポール地下鉄(SMRT):直流750V
- インド
- イラン
- テヘラン・メトロ(テヘラン都市地下鉄道):直流750V
- トルコ
- アンカラ地下鉄:直流750V
- イスタンブール地下鉄(イスタンブール交通):直流750V
- イズミル地下鉄:直流750V
ヨーロッパ
- オーストリア
- ウィーン地下鉄(ウィーン路線網 6号線を除く):直流750V
- ベルギー
- ブリュッセル地下鉄:直流900V
- ブルガリア
- ソフィア地下鉄:直流825V
- チェコ
- プラハ地下鉄:直流750V
- デンマーク
- コペンハーゲン地下鉄:直流750V
- フィンランド
- ヘルシンキ地下鉄:直流750V
- フランス
- SNCFセルダーニュ線(トラン・ジョーヌ)
- SNCFコル・デ・モンテ線(モンブラン・エクスプレス):リゾート地・シャモニーへ至る狭軌(メーターゲージ)線。スイスの私鉄・マルティニ・シャトラール鉄道(TMR)と直通運転している。コル・デ・モンテ線は第三軌条だが、TMRは架線集電であり、直通列車「モンブラン・エクスプレス」は集電靴・パンタグラフの両方を備えている。
- SNCFモーリエンヌ線:イタリアとの国境モーリエンヌ峠のフランス側、シャンベリー・シャルレゾー駅とモダーヌ駅の間はかつては直流750V・第三軌条で電化されており、集電靴を装備したモーリエンヌ線仕様のCC6500形電気機関車が専用で使用されていた。同区間はフランスとイタリアを結ぶ幹線ルートで、のちに直流1,500V・架線集電式に変更されており、TGV、アルテシアなどが運行されている。
- SNCFパリ近郊路線:パリ近郊路線はかつては第三軌条電化線も少なくなかった。サン・ラザール駅発着の近郊路線は1970年代まで第三軌条電化であった。また、オルセー駅開業当時、地下トンネルでは蒸気機関車が運行不可能なため、オルセー駅 - オステルリッツ駅間は第三軌条で電化されており、専用の電気機関車で連絡されていた。その後サン・ラザール駅発着路線は交流25,000V架線集電式、オルセー駅 - オステルリッツ駅間は直流1,500Vの架線集電式にそれぞれ変更されている。
- パリ地下鉄(メトロ):直流750V。鉄輪式・ゴムタイヤ式問わず。
- リヨン地下鉄(メトロ)A・B・D線:直流750V。ゴムタイヤ式。
- マルセイユ地下鉄(メトロ):直流750V。ゴムタイヤ式。
- ボルドーのトラム(路面電車):直流750V。地表集電方式。
- ドイツ
- ギリシャ
- アテネ地下鉄(アテネ・ピレアス電気鉄道):直流750V
- アテネ地下鉄(ATTIKO Metro):直流750V
- イタリア
- ミラノ地下鉄 M1線:直流750V
- オランダ
- アムステルダム地下鉄:直流750V。一部路線、直流600V架線集電式のLRTに乗り入れ
- ロッテルダム地下鉄:直流750V。一部区間、直流750V架線集電式
- ノルウェー
- オスロ地下鉄 2・4・5号線:直流750V
- ハンガリー
- ブダペスト地下鉄 2・3号線:直流750V
- ポルトガル
- リスボン地下鉄:直流750V
- ポーランド
- ワルシャワ地下鉄:直流750V
- ルーマニア
- ブカレスト地下鉄:直流750V
- イギリス
- ロンドンの近郊路線(主に南郊方面)
- ロンドン地下鉄:四軌条方式・直流630V
- ドックランズ・ライト・レイルウェイ:直流750V
- リヴァプール地下鉄:直流750V
- グラスゴー地下鉄:直流600V
- ヴォルクの電気鉄道:直流110V 1883年に開業した現存する最古の電気鉄道路線
- スウェーデン
- ストックホルム地下鉄:直流650V・直流750V
CIS諸国
- ロシア
- モスクワ地下鉄:直流825V
- サンクトペテルブルク地下鉄:直流825V
- ノボシビルスク地下鉄: 直流825V
- エカテリンブルク地下鉄:直流825V
- サマーラ地下鉄:直流825V
- ニジニ・ノヴゴロド地下鉄:直流825V
- カザン地下鉄:直流825V
- ウクライナ
- キエフ地下鉄:直流825V
- ハルキウ地下鉄:直流750V
- ドニプロペトロウシク地下鉄:直流825V
- ベラルーシ
- ミンスク地下鉄:直流825V
- ウズベキスタン
- タシュケント地下鉄:直流825V
- アゼルバイジャン
- バクー地下鉄:直流825V
- アルメニア
- エレバン地下鉄:直流825V
- ジョージア
- トビリシ地下鉄: 直流825V
北アメリカ
- アメリカ合衆国
- メトロポリタン・トランスポーテーション・オーソリティ(MTA)
- ニューヨーク地下鉄(MTA傘下のニューヨーク市都市交通局):直流625V
- スタテンアイランド鉄道
- メトロノース鉄道の電化区間(ニューヘイブン線の大部分を除く):直流800V
- ロングアイランド鉄道の電化区間
- エアトレインJFK
- パストレイン(ニューヨーク・ニュージャージー港湾公社)
- ワシントンD.C 地下鉄(ワシントン首都圏交通局):直流750V
- ボストン地下鉄(グリーンラインとブルーラインの一部を除く):直流600V
- SEPTA(フィラデルフィア)の地下鉄(ブルーライン・オレンジライン)・ライトレール「ノリスタウン高速線」:直流625V
- PATCO(ペンシルベニア・ニュージャージー州)
- ボルティモア地下鉄:直流700V
- シカゴ・L:直流600V
- アトランタ・マルタ:直流750V
- BART(サンフランシスコ・ベイエリアの都市高速鉄道):直流1,000V
- ロサンゼルス地下鉄レッドライン・パープルライン:直流750V
- アムトラック都市部地下線区間の一部(煤煙防止のため電気式ディーゼル機関車などが集電して走る)
- マイアミメトロレイル(Miami-Dade Metrorail)
- デトロイトピープルムーバ(Detroit People Mover)
- メトロポリタン・トランスポーテーション・オーソリティ(MTA)
- プエルトリコ(アメリカ合衆国自治領)
- トレンアーバノ:直流750V
- カナダ
- モントリオール地下鉄:直流750V
- トロント地下鉄:直流600V
- バンクーバー・スカイトレイン:直流600V(リニアーモーター式、カナダ・ラインのみ直流750Vで駆動方式が異なる)
- メキシコ
- メキシコシティ地下鉄(A線を除く):直流750V
南アメリカ
- ベネズエラ
- カラカス地下鉄:直流750V
- ブラジル
- リオデジャネイロ地下鉄 直流750V
- サンパウロ地下鉄(5号線を除く):直流750V
- ブラジリア地下鉄:直流750V
- アルゼンチン
- ブエノスアイレス地下鉄B線(メトロビアス、車両は日本の帝都高速度交通営団(営団地下鉄)丸ノ内線の中古車500形を運用している):直流600V
- ブエノスアイレスの近郊路線(Ferrocarril General Urquizaなど)
- チリ
- サンティアゴ地下鉄:直流750V
非電化との違い
景観上は大きな違いはないが、非電化の場合は当然ながら軌道内に立ち入っても感電しないため安全対策面では手軽になる。
誤解
第三軌条方式を採用している鉄道で、駅のホームから立小便をして電流の流れる軌条にかかると、小便を通じて電流が到達して感電死するという誤解があり、これを事実として描いたフィクション作品も存在する(漫画『きらきらひかる』等)。
アメリカで撮影されているテレビ番組『怪しい伝説』はこの誤解を検証するため実験を行ったが、体から出た小便は棒状ではなく細かい水滴状になっているため、数センチ以上離れると電流が到達しないと判明し、この説を「ウソ」と判定した。
脚注
- ↑ “中期経営計画「東京メトロプラン 2018」 (PDF)”. 東京地下鉄. p. 16. . 2016閲覧.