木 (数学)

提供: miniwiki
移動先:案内検索

テンプレート:Infobox graph 数学、特にグラフ理論の分野における(き、: tree)とは、連結閉路を持たない(無向)グラフである。有向グラフについての木(有向木)についても論じられるが、当記事では専ら無向木を扱う。

閉路を持たない(連結であるとは限らない)無向グラフを(もり、: forest)という。木は明らかに森である。

なお、閉路を持たない有向グラフは有向非巡回グラフである。有向木は有向非巡回グラフでもあるが、有向非巡回グラフは必ずしも有向木とは限らない。

コンピュータ上での木の扱いについては、木構造 (データ構造) を参照。

ファイル:Tree-sample1.png

特徴づけ

n 個の点からなるグラフ T について次は同値である[1]

  • T は木である
  • T閉路はなく、 n − 1 本の辺を持つ
  • T連結で、 n − 1 本の辺を持つ
  • T は連結で、すべての辺はである
  • T の任意の2点を結ぶがちょうど1つある
  • T に閉路はないが、新しい辺をつけ加えると閉路が必ず1つできる

性質

T には、以下のような性質がある。

  • T の2点を結ぶ T に含まれない辺 e に対して、T + e には e を通るただ一つの閉路があり、この閉路上の任意の辺 f に対して T + e - f は木となる。
  • 頂点が2つ以上ある木には少なくとも2個の端末点がある。また、端末点とは次数1の点である。

上の定理から、木には必ず端末点があり、その端末点を除去すると位数の一つ小さい木が得られる。逆に言えば、位数 n の木は、位数 n − 1 の木に一つの新しい点と、これに接続する一本の新しい辺を加えて得られる。

根つき木

あるノードを選んで、それを一番「上」にあると考えると、そのノードを基準として2つのノードに上下の関係を考えることが出来る(すべてのノードの組み合わせについて定義されるとは限らない)。このとき、その一番上のノードを(ね、: root)という。根を持つ木を単なる木と区別して根付き木という。

根つき木に関する用語は、それを家系図に見たてたものが多く使われる。

  • v1v2 が辺で結ばれており、しかも v1 の方が v2 よりも根に近いとき、v1v2であるといい、v2v1であるという。
  • v2v3 が共通の親を持つとき、v2v3兄弟という。
  • 根つき木上の2点 v1, v2 に対し、v2 と根を結ぶ経路上に v1 があるとき、v1v2先祖であるといい、v2v1子孫であるという。

また根つき木に関する用語として、他に以下のようなものがある。

  • 子を持たない点をという。
  • 各辺の長さを1とするとき、点と根との経路の長さをその点の高さという。また、根から最も経路の長さが長くなる点までの長さを、その木の高さという。

n を自然数とする。葉ではない各点に対しその点の子の数が常に n であるような木をn分木(nぶんぎ; n-ary tree)という。特に二分木はいくつかのアルゴリズムと密接に関わるデータ構造である。

脚注

参考文献

  • R. J. ウィルソン 『グラフ理論』原書第4版、西関隆夫・西関裕子、近代科学社、2007年。ISBN 978-4-7649-0296-1。

関連項目

外部リンク