小山信也

提供: miniwiki
移動先:案内検索

小山 信也(こやま しんや、1962年[1]5月7日[2] - )は日本数学者新潟県[1]新潟市[2]生まれ。東京大学理学部数学科卒業[1]東京工業大学大学院理工学研究科数学専攻修士課程修了[1]理学博士[1]東洋大学理工学部教授[1]。専門は数学整数論ゼータ関数論、数論的量子カオス、量子エルゴード性など[1]

業績

  • 数論的多様体のセルバーグ・ゼータ関数が,ラプラシアンの行列式によって表されることを証明した[3]
  • ビアンキ多様体のマース波動形式の L-ノルムに対する評価を改良した[4]
  • ピカール多様体に対する素測地線定理の誤差項を改良した[5]
  • ジャッケ・ラングランズ対応の像を決定し,その応用として数論的コンパクト面の素測地線定理を改善した[6]
  • ヘッケL関数の量指標アスペクトに関する凸評価を改善した.
  • ヘッケL関数の普遍性を,量指標アスペクトに関して証明した(見正秀彦との共同研究)[7]
  • アイゼンシュタイン級数の量子エルゴード性を,ビアンキ多様体に対して証明した[8]
  • 量子エルゴード性のレベル・アスペクトが成立することを発見し,証明した[9]
  • 絶対ゼータ関数を定義し,基本的な諸性質を証明した(黒川信重,Anton Deitmarとの共同研究)[10]
  • 多重ゼータ関数のオイラー積表示などいくつかの実例を計算した(黒川信重との共同研究)[11]
  • 一般化された置換のゼータ関数の行列式表示を与えた(中島さち子との共同研究)[12]
  • セルバーグ・ゼータ関数のオイラー積の収束性を,臨界領域内で初めて証明した(金子生弥との共同研究).

著書

訳書

  • 『オイラー博士の素敵な数式』(日本評論社,2008年2月)

脚注