定常過程

提供: miniwiki
移動先:案内検索

定常過程(ていじょうかてい、: Stationary process)とは、時間や位置によって確率分布が変化しない確率過程を指す。このため、平均分散も(もしあれば)時間や位置によって変化しない。

例えば、ホワイトノイズは定常的である。しかし、シンバルを鳴らしたときの音は定常的ではなく、時間と共に音が弱まっていく。

定常性(Stationarity)は時系列の解析でも重要であり、時系列データを定常的なものに変換することがよく行われる。例えば、経済的データは季節による変動があったり、価格レベルに依存する。ある定常過程と1つ以上の過程に傾向(トレンド)が認められるとき、これら過程を「傾向定常的; trend stationary」であるという。このようなデータから定常的成分だけを抜き出して分析することを「傾向除去; de-trending」と呼ぶ。

離散時間の定常過程で、標本値も離散的(とりうる値が N 個に限定されている)な場合をベルヌーイ系(Bernoulli scheme)と呼ぶ。N = 2 の場合を特にベルヌーイ過程(Bernoulli process)と呼ぶ。

弱い(広義の)定常性

広義の定常性は信号処理で一般に使われる概念で、弱い定常性(weak-sense stationarity)、広義定常性(wide-sense stationarity)(WSS) あるいは 共分散定常性(covariance stationarity)とも呼ばれる。WSS の無作為過程は1次および2次モーメント(平均と分散)が時間によって変化しない。平均共分散のある狭義の定常過程も WSS である。

従って、連続時間の確率過程 x(t) が WSS であるとき、その平均関数は以下の制約に従う。

1. [math]\mathbb{E}\{x(t)\} = m_x(t) = m_x(t + \tau) \,\, \forall \, \tau \in \mathbb{R}[/math]

また、相関関数は以下の制約に従う。

2. [math]\mathbb{E}\{x(t_1)x(t_2)\} = R_x(t_1, t_2) = R_x(t_1 + \tau, t_2 + \tau) = R_x(t_1 - t_2, 0) \,\, \forall \, \tau \in \mathbb{R}.[/math]

1つめは、平均関数 mx(t) が定数であることを意味している。2つめは相関関数が [math]t_1[/math][math]t_2[/math] の差にのみ依存し、1変数で表されることを意味している。従って、

[math]\,\!R_x(t_1 - t_2, 0)\,[/math]

の代わりに次のように記述する。

[math]R_x(\tau) \,\! \mbox{ where } \tau = t_1 - t_2.[/math]

WSS な無作為信号を線型時不変な(LTIフィルタで処理するとき、相関関数を線型写像と考える。2つの引数の差にのみ依存するため、それは巡回演算子であり、その固有関数フーリエ複素指数である。さらに、LTI演算子の固有関数複素指数であり、WSS な無作為信号のLTI処理は非常に扱いやすい。全ての計算は周波数領域で実行できる。このため、WSS 仮定は信号処理アルゴリズムによく使われている。

関連項目