ユニタリ群

提供: miniwiki
移動先:案内検索

テンプレート:Groups n 次のユニタリ群(ユニタリぐん、: unitary group) U(n) とは、nユニタリ行列のなすのことである。演算行列の積で与えられる。

ユニタリ群は一般線型群部分群である。

定義

複素数体上のユニタリ群

[math]\begin{align} \operatorname{U}(n) &= \{\, U \in \operatorname{GL}(n,\mathbb{C}) \mid \forall x, y \in \mathbb{C}^n : \langle Ux, Uy \rangle = \langle x, y \rangle \,\} \\ &= \{\, U \in \operatorname{GL}(n,\mathbb{C}) \mid U^\dagger U = I_n \,\} \end{align}[/math]

ここで GL(n, C) は一般線型群、〈-, -〉はエルミート形式、†はエルミート共役である。

つまりユニタリ群の元は有限次複素線型空間のエルミート形式を―したがってノルムを―保つ。これは「絶対値が 1 の複素数」の線型変換における類似物である[1]

一般の体上のユニタリ群

ユニタリ群は一般の上では次のように定義される。 基礎体 K の2次拡大体 L をとる。 線型空間 V = Ln 上のエルミート形式

[math] \langle x, y \rangle = x_1 \overline{y_1} + \dotsb + x_n \overline{y_n} \qquad \big(x = (x_i),\ y = (y_i) \in V\big) [/math]

(ここで [math]\overline{y_i}[/math]代数共役を表す) を不変に保つ V 上の線型自己同型写像のなす群を U(n, K, L) と表し、これをユニタリ群という。

[math] \operatorname{U}(n, K, L) = \{\, U \in \operatorname{GL}(n, L) \mid \forall x, y \in V : \langle Ux, Uy \rangle = \langle x, y \rangle \,\} [/math]

4元体F4 = {0, 1, ω, ω2} とする。 ただし演算は関係式 ω2 + ω + 1 = 0 から定める。このとき U(2, F2, F4) は位数18の群で次の2元から生成される。

[math] \operatorname{U}(2, \mathbb{F}_2, \mathbb{F}_4) = \Big\langle \begin{pmatrix} \omega & \omega \\ 0 & \omega \end{pmatrix},\ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Big\rangle [/math]

性質

複素数体上のユニタリ群は以下の性質を満たす。

関連項目

脚注

  1. Finite-Dimensional Vector Spaces (Paul R. Halmos) §59